कैलकुलस उदाहरण

Solve the Differential Equation (dy)/(dx)=(xe^(-y))/(1+x^2)
चरण 1
चरों को अलग करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
गुणनखंडों को पुनर्समूहन करें
चरण 1.2
दोनों पक्षों को से गुणा करें.
चरण 1.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
में से का गुणनखंड करें.
चरण 1.3.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.3.3
व्यंजक को फिर से लिखें.
चरण 1.4
समीकरण को फिर से लिखें.
चरण 2
दोनों पक्षों को समाकलित करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
प्रत्येक पक्ष का एक समाकलन सेट करें.
चरण 2.2
बाएं पक्ष का समाकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1
के घातांक को नकारें और भाजक से बाहर निकालें.
चरण 2.2.1.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.2.1
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.2.1.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.2.1.2.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.2.1.2.1
को से गुणा करें.
चरण 2.2.1.2.1.2.2
को से गुणा करें.
चरण 2.2.1.2.2
को से गुणा करें.
चरण 2.2.2
के संबंध में का इंटीग्रल है.
चरण 2.3
दाएं पक्ष का समाकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
मान लीजिए .फिर , तो . और का उपयोग करके फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.1
मान लें . ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.1.1
को अवकलित करें.
चरण 2.3.1.1.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.3.1.1.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.1.1.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.1.1.5
और जोड़ें.
चरण 2.3.1.2
और का उपयोग करके समस्या को फिर से लिखें.
चरण 2.3.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1
को से गुणा करें.
चरण 2.3.2.2
को के बाईं ओर ले जाएं.
चरण 2.3.3
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.3.4
के संबंध में का इंटीग्रल है.
चरण 2.3.5
सरल करें.
चरण 2.3.6
की सभी घटनाओं को से बदलें.
चरण 2.4
समाकलन के स्थिरांक को दाईं ओर के रूप में समूहित करें.
चरण 3
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
घातांक से चर को हटाने के लिए समीकरण के दोनों पक्षों का प्राकृतिक लघुगणक लें.
चरण 3.2
दाएं पक्ष का विस्तार करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
को लघुगणक के बाहर ले जाकर का प्रसार करें.
चरण 3.2.2
का प्राकृतिक लघुगणक है.
चरण 3.2.3
को से गुणा करें.
चरण 3.3
को लघुगणक के बाहर ले जाकर का प्रसार करें.
चरण 3.4
को लघुगणक के अंदर ले जाकर को सरल करें.