कैलकुलस उदाहरण

Solve the Differential Equation (dy)/(dx)=(xy)/(x+3)
चरण 1
चरों को अलग करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
गुणनखंडों को पुनर्समूहन करें
चरण 1.2
दोनों पक्षों को से गुणा करें.
चरण 1.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
में से का गुणनखंड करें.
चरण 1.3.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.3.3
व्यंजक को फिर से लिखें.
चरण 1.4
समीकरण को फिर से लिखें.
चरण 2
दोनों पक्षों को समाकलित करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
प्रत्येक पक्ष का एक समाकलन सेट करें.
चरण 2.2
के संबंध में का इंटीग्रल है.
चरण 2.3
दाएं पक्ष का समाकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
को से विभाजित करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.1
बहुपदों को विभाजित करने के लिए सेट करें. यदि प्रत्येक घातांक के लिए कोई पद नहीं है, तो के मान वाला एक शब्द डालें.
++
चरण 2.3.1.2
भाज्य के उच्च क्रम के पद को विभाजक के उच्च क्रम वाले पद से विभाजित करें.
++
चरण 2.3.1.3
भाजक से नए भागफल पद को गुणा करें.
++
++
चरण 2.3.1.4
व्यंजक को भाज्य से घटाने की आवश्यकता है, इसलिए में सभी चिह्नों को प्रतिस्थापित करें
++
--
चरण 2.3.1.5
संकेतों को बदलने के बाद, नया लाभांश खोजने के लिए गुणा बहुपद से अंतिम लाभांश जोड़ें.
++
--
-
चरण 2.3.1.6
अंतिम उत्तर भागफल और भाजक पर शेषफल है.
चरण 2.3.2
एकल समाकलन को कई समाकलन में विभाजित करें.
चरण 2.3.3
स्थिरांक नियम लागू करें.
चरण 2.3.4
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.3.5
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.3.6
को से गुणा करें.
चरण 2.3.7
मान लीजिए . फिर . और का उपयोग करके फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.7.1
मान लें . ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.7.1.1
को अवकलित करें.
चरण 2.3.7.1.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.3.7.1.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.7.1.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.7.1.5
और जोड़ें.
चरण 2.3.7.2
और का उपयोग करके समस्या को फिर से लिखें.
चरण 2.3.8
के संबंध में का इंटीग्रल है.
चरण 2.3.9
सरल करें.
चरण 2.3.10
की सभी घटनाओं को से बदलें.
चरण 2.4
समाकलन के स्थिरांक को दाईं ओर के रूप में समूहित करें.
चरण 3
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
लघुगणक वाले सभी पदों को समीकरण के बाईं पक्ष की ओर ले जाएँ.
चरण 3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1
को लघुगणक के अंदर ले जाकर को सरल करें.
चरण 3.2.1.2
लघुगणक की गुणनफल गुणधर्म, का उपयोग करें.
चरण 3.3
के लिए हल करने के लिए, लघुगणक के गुणों का उपयोग करके समीकरण को फिर से लिखें.
चरण 3.4
लघुगणक की परिभाषा का उपयोग करते हुए को घातीय रूप में फिर से लिखें. अगर और धनात्मक वास्तविक संख्याएं हैं और , तो के बराबर है.
चरण 3.5
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.1
समीकरण को के रूप में फिर से लिखें.
चरण 3.5.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.5.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.5.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.5.2.2.1.2
को से विभाजित करें.
चरण 3.5.3
निरपेक्ष मान पद को हटा दें. यह समीकरण के दाएं पक्ष की ओर एक बनाता है जो है.
चरण 4
स्थिर पदों को एक साथ समूहित करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
को के रूप में फिर से लिखें.
चरण 4.2
और को पुन: क्रमित करें.
चरण 4.3
प्लस या माइनस के साथ स्थिरांक मिलाएं.