समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
को से अलग करें.
चरण 1.2
को के रूप में फिर से लिखें.
चरण 1.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.4
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 2
चरण 2.1
को से अलग करें.
चरण 2.2
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.5
और जोड़ें.
चरण 2.6
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.7
गुणा करें.
चरण 2.7.1
को से गुणा करें.
चरण 2.7.2
को से गुणा करें.
चरण 2.8
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.9
को से गुणा करें.
चरण 3
चरण 3.1
के लिए और के लिए प्रतिस्थापित करें.
चरण 3.2
चूँकि बायाँ पक्ष दाएँ पक्ष के बराबर नहीं है, समीकरण एक सर्वसमिका नहीं है.
कोई सर्वसमिका नहीं है.
कोई सर्वसमिका नहीं है.
चरण 4
चरण 4.1
को से प्रतिस्थापित करें.
चरण 4.2
को से प्रतिस्थापित करें.
चरण 4.3
को से प्रतिस्थापित करें.
चरण 4.3.1
को से प्रतिस्थापित करें.
चरण 4.3.2
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 4.3.3
गुणा करें.
चरण 4.3.3.1
को से गुणा करें.
चरण 4.3.3.2
को से गुणा करें.
चरण 4.3.4
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 4.3.5
और जोड़ें.
चरण 4.3.6
को से प्रतिस्थापित करें.
चरण 4.3.6.1
में से का गुणनखंड करें.
चरण 4.3.6.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.3.6.3
व्यंजक को फिर से लिखें.
चरण 4.4
इंटिग्रेशन गुणनखंड खोजें.
चरण 5
चरण 5.1
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 5.2
के संबंध में का इंटीग्रल है.
चरण 5.3
सरल करें.
चरण 5.4
प्रत्येक पद को सरल करें.
चरण 5.4.1
को लघुगणक के अंदर ले जाकर को सरल करें.
चरण 5.4.2
चरघातांक और लघुगणक व्युत्क्रम फलन होते हैं
चरण 5.4.3
में निरपेक्ष मान हटा दें क्योंकि सम घात वाले घातांक हमेशा धनात्मक होते हैं.
चरण 6
चरण 6.1
को से गुणा करें.
चरण 6.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.2.1
में से का गुणनखंड करें.
चरण 6.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.2.3
व्यंजक को फिर से लिखें.
चरण 6.3
को से गुणा करें.
चरण 6.4
वितरण गुणधर्म लागू करें.
चरण 6.5
को से गुणा करें.
चरण 6.6
गुणा करें.
चरण 6.6.1
को से गुणा करें.
चरण 6.6.2
को से गुणा करें.
चरण 6.7
वितरण गुणधर्म लागू करें.
चरण 6.8
घातांक जोड़कर को से गुणा करें.
चरण 6.8.1
ले जाएं.
चरण 6.8.2
को से गुणा करें.
चरण 6.8.2.1
को के घात तक बढ़ाएं.
चरण 6.8.2.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 6.8.3
और जोड़ें.
चरण 6.9
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.9.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.9.2
व्यंजक को फिर से लिखें.
चरण 7
को के इंटीग्रल के बराबर सेट करें.
चरण 8
चरण 8.1
स्थिरांक नियम लागू करें.
चरण 9
चूँकि के इंटिग्रल में इंटिग्रेशन स्थिरांक होगा, हम को से बदल सकते हैं.
चरण 10
सेट करें.
चरण 11
चरण 11.1
को से अलग करें.
चरण 11.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 11.3
का मान ज्ञात करें.
चरण 11.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 11.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 11.3.3
को से गुणा करें.
चरण 11.4
फलन नियम का उपयोग करके अंतर करें जो बताता है कि का व्युत्पन्न है.
चरण 11.5
पदों को पुन: व्यवस्थित करें
चरण 12
चरण 12.1
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
चरण 12.1.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 12.1.2
में विपरीत पदों को मिलाएं.
चरण 12.1.2.1
में से घटाएं.
चरण 12.1.2.2
और जोड़ें.
चरण 13
चरण 13.1
के दोनों पक्षों को समाकलित करें.
चरण 13.2
का मान ज्ञात करें.
चरण 13.3
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 13.4
घात नियम के अनुसार, के संबंध में का समाकलन है.
चरण 13.5
उत्तर को सरल करें.
चरण 13.5.1
को के रूप में फिर से लिखें.
चरण 13.5.2
सरल करें.
चरण 13.5.2.1
और को मिलाएं.
चरण 13.5.2.2
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 14
में को प्रतिस्थापित करें.
चरण 15
चरण 15.1
और को मिलाएं.
चरण 15.2
को के बाईं ओर ले जाएं.