समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
को से अलग करें.
चरण 1.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.3
का मान ज्ञात करें.
चरण 1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.3
को से गुणा करें.
चरण 1.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.5
सरल करें.
चरण 1.5.1
और जोड़ें.
चरण 1.5.2
के गुणनखंडों को फिर से क्रमित करें.
चरण 2
चरण 2.1
को से अलग करें.
चरण 2.2
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 2.3
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.4
का मान ज्ञात करें.
चरण 2.4.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.4.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.4.3
को से गुणा करें.
चरण 2.5
स्थिरांक नियम का उपयोग करके अंतर करें.
चरण 2.5.1
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.5.2
और जोड़ें.
चरण 3
चरण 3.1
के लिए और के लिए प्रतिस्थापित करें.
चरण 3.2
चूँकि दोनों पक्षों को समतुल्य दिखाया गया है, समीकरण एक सर्वसमिका है.
एक सर्वसमिका है.
एक सर्वसमिका है.
चरण 4
को के इंटीग्रल के बराबर सेट करें.
चरण 5
चरण 5.1
एकल समाकलन को कई समाकलन में विभाजित करें.
चरण 5.2
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 5.3
घात नियम के अनुसार, के संबंध में का समाकलन है.
चरण 5.4
स्थिरांक नियम लागू करें.
चरण 5.5
और को मिलाएं.
चरण 5.6
सरल करें.
चरण 6
चूँकि के इंटिग्रल में इंटिग्रेशन स्थिरांक होगा, हम को से बदल सकते हैं.
चरण 7
सेट करें.
चरण 8
चरण 8.1
को से अलग करें.
चरण 8.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 8.3
का मान ज्ञात करें.
चरण 8.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 8.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 8.3.3
को के बाईं ओर ले जाएं.
चरण 8.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 8.5
फलन नियम का उपयोग करके अंतर करें जो बताता है कि का व्युत्पन्न है.
चरण 8.6
सरल करें.
चरण 8.6.1
और जोड़ें.
चरण 8.6.2
पदों को पुन: व्यवस्थित करें
चरण 9
चरण 9.1
के लिए हल करें.
चरण 9.1.1
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 9.1.2
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
चरण 9.1.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 9.1.2.2
में विपरीत पदों को मिलाएं.
चरण 9.1.2.2.1
में से घटाएं.
चरण 9.1.2.2.2
और जोड़ें.
चरण 10
चरण 10.1
के दोनों पक्षों को समाकलित करें.
चरण 10.2
का मान ज्ञात करें.
चरण 10.3
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 10.4
के संबंध में का इंटीग्रल है.
चरण 10.5
सरल करें.
चरण 11
में को प्रतिस्थापित करें.