कैलकुलस उदाहरण

Solve the Differential Equation (d^2y)/(dx^2)-16y=0
चरण 1
मान लें कि सभी समाधान के रूप में हैं.
चरण 2
के लिए अभिलाक्षणिक समीकरण पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पहला व्युत्पन्न पता करें.
चरण 2.2
दूसरा व्युत्पन्न पता करें.
चरण 2.3
डिफरेन्शल इक्वेश़न में प्रतिस्थापित करें
चरण 2.4
का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
में से का गुणनखंड करें.
चरण 2.4.2
में से का गुणनखंड करें.
चरण 2.4.3
में से का गुणनखंड करें.
चरण 2.5
चूंकि घातांक कभी शून्य नहीं हो सकते, इसलिए दोनों पक्षों को से विभाजित करें.
चरण 3
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.2
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 3.3
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
को के रूप में फिर से लिखें.
चरण 3.3.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 3.4
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 3.4.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 3.4.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 3.4.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 4
के दो पाए गए मानों के साथ, दो समाधानों का निर्माण किया जा सकता है.
चरण 5
सुपरपोज़िशन के सिद्धांत के अनुसार, सामान्य समाधान दूसरे क्रम के सजातीय रैखिक डिफरेन्शल इक्वेश़न के लिए दो समाधानों का एक रैखिक संयोजन है.