कैलकुलस उदाहरण

Solve the Differential Equation (ye^x+2e^x+y^2)dx+(e^x+2xy)dy=0
चरण 1
पता कीजिए जहां है.
और स्टेप्स के लिए टैप करें…
चरण 1.1
को से अलग करें.
चरण 1.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.3
को से गुणा करें.
चरण 1.4
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.1
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.4.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.5
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.1
और जोड़ें.
चरण 1.5.2
पदों को पुन: व्यवस्थित करें
चरण 2
पता कीजिए जहां है.
और स्टेप्स के लिए टैप करें…
चरण 2.1
को से अलग करें.
चरण 2.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.3
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 2.4
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.4.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.4.3
को से गुणा करें.
चरण 2.5
पदों को पुन: व्यवस्थित करें
चरण 3
उस को जांचें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
के लिए और के लिए प्रतिस्थापित करें.
चरण 3.2
चूँकि दोनों पक्षों को समतुल्य दिखाया गया है, समीकरण एक सर्वसमिका है.
एक सर्वसमिका है.
एक सर्वसमिका है.
चरण 4
को के इंटीग्रल के बराबर सेट करें.
चरण 5
को खोजने के लिए को समाकलित करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
एकल समाकलन को कई समाकलन में विभाजित करें.
चरण 5.2
स्थिरांक नियम लागू करें.
चरण 5.3
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 5.4
घात नियम के अनुसार, के संबंध में का समाकलन है.
चरण 5.5
सरल करें.
चरण 5.6
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.6.1
और को मिलाएं.
चरण 5.6.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 5.6.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.6.2.2
व्यंजक को फिर से लिखें.
चरण 5.6.3
को से गुणा करें.
चरण 6
चूँकि के इंटिग्रल में इंटिग्रेशन स्थिरांक होगा, हम को से बदल सकते हैं.
चरण 7
सेट करें.
चरण 8
पता करें.
और स्टेप्स के लिए टैप करें…
चरण 8.1
को से अलग करें.
चरण 8.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 8.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 8.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 8.3.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 8.4
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 8.4.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 8.4.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 8.4.3
को से गुणा करें.
चरण 8.5
फलन नियम का उपयोग करके अंतर करें जो बताता है कि का व्युत्पन्न है.
चरण 8.6
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 8.6.1
पदों को पुन: व्यवस्थित करें
चरण 8.6.2
गुणनखंडों को में पुन: क्रमित करें.
चरण 9
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 9.1.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 9.1.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 9.1.3
में विपरीत पदों को मिलाएं.
और स्टेप्स के लिए टैप करें…
चरण 9.1.3.1
में से घटाएं.
चरण 9.1.3.2
और जोड़ें.
चरण 9.1.3.3
में से घटाएं.
चरण 9.1.3.4
और जोड़ें.
चरण 10
को खोजने के लिए का विरोधी व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 10.1
के दोनों पक्षों को समाकलित करें.
चरण 10.2
का मान ज्ञात करें.
चरण 10.3
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 10.4
के संबंध में का इंटीग्रल है.
चरण 10.5
सरल करें.
चरण 11
में को प्रतिस्थापित करें.
चरण 12
गुणनखंडों को में पुन: क्रमित करें.