कैलकुलस उदाहरण

Solve the Differential Equation (dy)/(dx)-yx=x , y(0)=0
,
चरण 1
चरों को अलग करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 1.2
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
को के घात तक बढ़ाएं.
चरण 1.2.2
में से का गुणनखंड करें.
चरण 1.2.3
में से का गुणनखंड करें.
चरण 1.2.4
में से का गुणनखंड करें.
चरण 1.3
दोनों पक्षों को से गुणा करें.
चरण 1.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.1
में से का गुणनखंड करें.
चरण 1.4.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.4.3
व्यंजक को फिर से लिखें.
चरण 1.5
समीकरण को फिर से लिखें.
चरण 2
दोनों पक्षों को समाकलित करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
प्रत्येक पक्ष का एक समाकलन सेट करें.
चरण 2.2
बाएं पक्ष का समाकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
मान लीजिए . फिर . और का उपयोग करके फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1
मान लें . ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1.1
को अवकलित करें.
चरण 2.2.1.1.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.2.1.1.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.1.1.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.1.1.5
और जोड़ें.
चरण 2.2.1.2
और का उपयोग करके समस्या को फिर से लिखें.
चरण 2.2.2
के संबंध में का इंटीग्रल है.
चरण 2.2.3
की सभी घटनाओं को से बदलें.
चरण 2.3
घात नियम के अनुसार, के संबंध में का समाकलन है.
चरण 2.4
समाकलन के स्थिरांक को दाईं ओर के रूप में समूहित करें.
चरण 3
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
के लिए हल करने के लिए, लघुगणक के गुणों का उपयोग करके समीकरण को फिर से लिखें.
चरण 3.2
लघुगणक की परिभाषा का उपयोग करते हुए को घातीय रूप में फिर से लिखें. अगर और धनात्मक वास्तविक संख्याएं हैं और , तो के बराबर है.
चरण 3.3
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
समीकरण को के रूप में फिर से लिखें.
चरण 3.3.2
और को मिलाएं.
चरण 3.3.3
निरपेक्ष मान पद को हटा दें. यह समीकरण के दाएं पक्ष की ओर एक बनाता है जो है.
चरण 3.3.4
समीकरण के दोनों पक्षों से घटाएं.
चरण 4
स्थिर पदों को एक साथ समूहित करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
को के रूप में फिर से लिखें.
चरण 4.2
और को पुन: क्रमित करें.
चरण 4.3
प्लस या माइनस के साथ स्थिरांक मिलाएं.
चरण 5
के लिए और में के लिए को प्रतिस्थापित करके का मान ज्ञात करने के लिए प्रारंभिक शर्त का उपयोग करें.
चरण 6
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
समीकरण को के रूप में फिर से लिखें.
चरण 6.2
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 6.2.2
को से विभाजित करें.
चरण 6.2.3
तक बढ़ाई गई कोई भी चीज़ होती है.
चरण 6.2.4
को से गुणा करें.
चरण 6.3
समीकरण के दोनों पक्षों में जोड़ें.
चरण 7
को में के स्थान पर प्रतिस्थापित करें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
को से प्रतिस्थापित करें.
चरण 7.2
को से गुणा करें.