कैलकुलस उदाहरण

Solve the Differential Equation ydx+2xdy=0
चरण 1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2
दोनों पक्षों को से गुणा करें.
चरण 3
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 3.2
और को मिलाएं.
चरण 3.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
में से का गुणनखंड करें.
चरण 3.3.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.3
व्यंजक को फिर से लिखें.
चरण 3.4
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 3.5
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 3.5.2
में से का गुणनखंड करें.
चरण 3.5.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.5.4
व्यंजक को फिर से लिखें.
चरण 3.6
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 4
दोनों पक्षों को समाकलित करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
प्रत्येक पक्ष का एक समाकलन सेट करें.
चरण 4.2
बाएं पक्ष का समाकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 4.2.2
के संबंध में का इंटीग्रल है.
चरण 4.2.3
सरल करें.
चरण 4.3
दाएं पक्ष का समाकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 4.3.2
के संबंध में का इंटीग्रल है.
चरण 4.3.3
सरल करें.
चरण 4.4
समाकलन के स्थिरांक को दाईं ओर के रूप में समूहित करें.
चरण 5
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
लघुगणक वाले सभी पदों को समीकरण के बाईं पक्ष की ओर ले जाएँ.
चरण 5.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1.1.1
को लघुगणक के अंदर ले जाकर को सरल करें.
चरण 5.2.1.1.2
में निरपेक्ष मान हटा दें क्योंकि सम घात वाले घातांक हमेशा धनात्मक होते हैं.
चरण 5.2.1.2
लघुगणक की गुणनफल गुणधर्म, का उपयोग करें.
चरण 5.3
के लिए हल करने के लिए, लघुगणक के गुणों का उपयोग करके समीकरण को फिर से लिखें.
चरण 5.4
लघुगणक की परिभाषा का उपयोग करते हुए को घातीय रूप में फिर से लिखें. अगर और धनात्मक वास्तविक संख्याएं हैं और , तो के बराबर है.
चरण 5.5
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.5.1
समीकरण को के रूप में फिर से लिखें.
चरण 5.5.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.5.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 5.5.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.5.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 5.5.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.5.2.2.1.2
को से विभाजित करें.
चरण 5.5.3
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 5.5.4
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.5.4.1
को के रूप में फिर से लिखें.
चरण 5.5.4.2
को से गुणा करें.
चरण 5.5.4.3
भाजक को मिलाएं और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.5.4.3.1
को से गुणा करें.
चरण 5.5.4.3.2
को के घात तक बढ़ाएं.
चरण 5.5.4.3.3
को के घात तक बढ़ाएं.
चरण 5.5.4.3.4
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 5.5.4.3.5
और जोड़ें.
चरण 5.5.4.3.6
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 5.5.4.3.6.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 5.5.4.3.6.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 5.5.4.3.6.3
और को मिलाएं.
चरण 5.5.4.3.6.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 5.5.4.3.6.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.5.4.3.6.4.2
व्यंजक को फिर से लिखें.
चरण 5.5.4.3.6.5
सरल करें.
चरण 5.5.4.4
रेडिकल के लिए उत्पाद नियम का उपयोग करके जोड़ें.
चरण 5.5.5
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 5.5.5.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 5.5.5.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 5.5.5.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 6
समाकलन की संतति को सरल करें.