समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
दोनों पक्षों को से गुणा करें.
चरण 1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.1
में से का गुणनखंड करें.
चरण 1.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.3
व्यंजक को फिर से लिखें.
चरण 1.3
समीकरण को फिर से लिखें.
चरण 2
चरण 2.1
प्रत्येक पक्ष का एक समाकलन सेट करें.
चरण 2.2
बाएं पक्ष का समाकलन करें.
चरण 2.2.1
मान लीजिए .फिर , तो . और का उपयोग करके फिर से लिखें.
चरण 2.2.1.1
मान लें . ज्ञात करें.
चरण 2.2.1.1.1
को अवकलित करें.
चरण 2.2.1.1.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.2.1.1.3
का मान ज्ञात करें.
चरण 2.2.1.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.1.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.1.1.3.3
को से गुणा करें.
चरण 2.2.1.1.4
स्थिरांक नियम का उपयोग करके अंतर करें.
चरण 2.2.1.1.4.1
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.1.1.4.2
और जोड़ें.
चरण 2.2.1.2
और का उपयोग करके समस्या को फिर से लिखें.
चरण 2.2.2
सरल करें.
चरण 2.2.2.1
को से गुणा करें.
चरण 2.2.2.2
को के बाईं ओर ले जाएं.
चरण 2.2.3
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.2.4
घातांक के बुनियादी नियम लागू करें.
चरण 2.2.4.1
को भाजक में से पावर तक बढ़ा कर हटा दें.
चरण 2.2.4.2
घातांक को में गुणा करें.
चरण 2.2.4.2.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.2.4.2.2
को से गुणा करें.
चरण 2.2.5
घात नियम के अनुसार, के संबंध में का समाकलन है.
चरण 2.2.6
सरल करें.
चरण 2.2.6.1
को के रूप में फिर से लिखें.
चरण 2.2.6.2
को से गुणा करें.
चरण 2.2.7
की सभी घटनाओं को से बदलें.
चरण 2.3
घात नियम के अनुसार, के संबंध में का समाकलन है.
चरण 2.4
समाकलन के स्थिरांक को दाईं ओर के रूप में समूहित करें.
चरण 3
चरण 3.1
और को मिलाएं.
चरण 3.2
समीकरण के पदों का LCD पता करें.
चरण 3.2.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 3.2.2
LCM (लघुत्तम समापवर्तक) सबसे छोटी धनात्मक संख्या है जिसे सभी संख्याएँ समान रूप से विभाजित करती हैं.
1. प्रत्येक संख्या के अभाज्य गुणनखंडों की सूची बनाइए.
2. प्रत्येक गुणनखंड को किसी भी संख्या में जितनी बार आता है उतनी बार गुणा करें.
चरण 3.2.3
चूंकि का और के अलावा कोई गुणनखंड नहीं है.
एक अभाज्य संख्या है
चरण 3.2.4
चूंकि का और के अलावा कोई गुणनखंड नहीं है.
एक अभाज्य संख्या है
चरण 3.2.5
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 3.2.6
का LCM (लघुत्तम समापवर्तक) सभी अभाज्य गुणन खंड में से किसी एक संख्या में आने वाली सबसे बड़ी संख्या को गुणा करने का परिणाम है.
चरण 3.2.7
को से गुणा करें.
चरण 3.2.8
का गुणनखंड ही है.
बार आता है.
चरण 3.2.9
का LCM (न्यूनतम सामान्य गुणक) सभी गुणनखंडों को किसी भी पद में सबसे बड़ी संख्या में गुणा करने का परिणाम है.
चरण 3.2.10
कुछ संख्याओं का लघुत्तम समापवर्तक वह सबसे छोटी संख्या होती है, जिसके गुणनखंड होते हैं.
चरण 3.3
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
चरण 3.3.1
के प्रत्येक पद को से गुणा करें.
चरण 3.3.2
बाईं ओर को सरल बनाएंं.
चरण 3.3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.2.1.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 3.3.2.1.2
में से का गुणनखंड करें.
चरण 3.3.2.1.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.2.1.4
व्यंजक को फिर से लिखें.
चरण 3.3.2.2
को से गुणा करें.
चरण 3.3.3
दाईं ओर को सरल बनाएंं.
चरण 3.3.3.1
प्रत्येक पद को सरल करें.
चरण 3.3.3.1.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 3.3.3.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.3.1.2.1
में से का गुणनखंड करें.
चरण 3.3.3.1.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.3.1.2.3
व्यंजक को फिर से लिखें.
चरण 3.3.3.1.3
वितरण गुणधर्म लागू करें.
चरण 3.3.3.1.4
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 3.3.3.1.5
को से गुणा करें.
चरण 3.3.3.1.6
को से गुणा करें.
चरण 3.3.3.1.7
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 3.3.3.1.8
वितरण गुणधर्म लागू करें.
चरण 3.3.3.1.9
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 3.3.3.1.10
को से गुणा करें.
चरण 3.3.3.1.11
को से गुणा करें.
चरण 3.4
समीकरण को हल करें.
चरण 3.4.1
समीकरण को के रूप में फिर से लिखें.
चरण 3.4.2
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
चरण 3.4.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.4.2.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.4.3
में से का गुणनखंड करें.
चरण 3.4.3.1
में से का गुणनखंड करें.
चरण 3.4.3.2
में से का गुणनखंड करें.
चरण 3.4.3.3
में से का गुणनखंड करें.
चरण 3.4.4
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 3.4.4.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.4.4.2
बाईं ओर को सरल बनाएंं.
चरण 3.4.4.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.4.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.4.2.1.2
व्यंजक को फिर से लिखें.
चरण 3.4.4.2.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.4.2.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.4.2.2.2
को से विभाजित करें.
चरण 3.4.4.3
दाईं ओर को सरल बनाएंं.
चरण 3.4.4.3.1
प्रत्येक पद को सरल करें.
चरण 3.4.4.3.1.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 3.4.4.3.1.2
और के उभयनिष्ठ गुणनखंड को रद्द करें.
चरण 3.4.4.3.1.2.1
में से का गुणनखंड करें.
चरण 3.4.4.3.1.2.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
चरण 3.4.4.3.1.2.2.1
में से का गुणनखंड करें.
चरण 3.4.4.3.1.2.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.4.3.1.2.2.3
व्यंजक को फिर से लिखें.
चरण 3.4.4.3.1.3
और के उभयनिष्ठ गुणनखंड को रद्द करें.
चरण 3.4.4.3.1.3.1
में से का गुणनखंड करें.
चरण 3.4.4.3.1.3.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
चरण 3.4.4.3.1.3.2.1
में से का गुणनखंड करें.
चरण 3.4.4.3.1.3.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.4.3.1.3.2.3
व्यंजक को फिर से लिखें.
चरण 4
समाकलन की संतति को सरल करें.