कैलकुलस उदाहरण

Solve the Differential Equation dx-4xy^3dy=0
चरण 1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2
दोनों पक्षों को से गुणा करें.
चरण 3
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 3.2
और को मिलाएं.
चरण 3.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
में से का गुणनखंड करें.
चरण 3.3.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.3
व्यंजक को फिर से लिखें.
चरण 3.4
और को मिलाएं.
चरण 3.5
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 4
दोनों पक्षों को समाकलित करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
प्रत्येक पक्ष का एक समाकलन सेट करें.
चरण 4.2
बाएं पक्ष का समाकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 4.2.2
घात नियम के अनुसार, के संबंध में का समाकलन है.
चरण 4.2.3
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.3.1
को के रूप में फिर से लिखें.
चरण 4.2.3.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.3.2.1
और को मिलाएं.
चरण 4.2.3.2.2
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.3.2.2.1
में से का गुणनखंड करें.
चरण 4.2.3.2.2.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.3.2.2.2.1
में से का गुणनखंड करें.
चरण 4.2.3.2.2.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.3.2.2.2.3
व्यंजक को फिर से लिखें.
चरण 4.2.3.2.2.2.4
को से विभाजित करें.
चरण 4.3
दाएं पक्ष का समाकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 4.3.2
के संबंध में का इंटीग्रल है.
चरण 4.3.3
सरल करें.
चरण 4.4
समाकलन के स्थिरांक को दाईं ओर के रूप में समूहित करें.
चरण 5
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1.1
के प्रत्येक पद को से विभाजित करें.
चरण 5.1.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.1.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 5.1.2.2
को से विभाजित करें.
चरण 5.1.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.1.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1.3.1.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 5.1.3.1.2
को से विभाजित करें.
चरण 5.1.3.1.3
ऋणात्मक को के भाजक से हटा दें.
चरण 5.1.3.1.4
को के रूप में फिर से लिखें.
चरण 5.2
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 5.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 5.3.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 5.3.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 5.3.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 6
समाकलन की संतति को सरल करें.