कैलकुलस उदाहरण

Solve the Differential Equation (3dy)/(dx)-18x=-6xy
चरण 1
चरों को अलग करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
गुणनखंड बाहर.
चरण 1.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 1.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 1.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.2.2.1.2
को से विभाजित करें.
चरण 1.2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.2.2.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.2.3.1.1
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.2.3.1.1.1
में से का गुणनखंड करें.
चरण 1.2.2.3.1.1.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.2.3.1.1.2.1
में से का गुणनखंड करें.
चरण 1.2.2.3.1.1.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.2.3.1.1.2.3
व्यंजक को फिर से लिखें.
चरण 1.2.2.3.1.1.2.4
को से विभाजित करें.
चरण 1.2.2.3.1.2
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.2.3.1.2.1
में से का गुणनखंड करें.
चरण 1.2.2.3.1.2.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.2.3.1.2.2.1
में से का गुणनखंड करें.
चरण 1.2.2.3.1.2.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.2.3.1.2.2.3
व्यंजक को फिर से लिखें.
चरण 1.2.2.3.1.2.2.4
को से विभाजित करें.
चरण 1.3
गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1.1
में से का गुणनखंड करें.
चरण 1.3.1.2
में से का गुणनखंड करें.
चरण 1.3.1.3
में से का गुणनखंड करें.
चरण 1.3.2
को के रूप में फिर से लिखें.
चरण 1.4
दोनों पक्षों को से गुणा करें.
चरण 1.5
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 1.5.2
और को मिलाएं.
चरण 1.5.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.3.1
में से का गुणनखंड करें.
चरण 1.5.3.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.5.3.3
व्यंजक को फिर से लिखें.
चरण 1.6
समीकरण को फिर से लिखें.
चरण 2
दोनों पक्षों को समाकलित करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
प्रत्येक पक्ष का एक समाकलन सेट करें.
चरण 2.2
बाएं पक्ष का समाकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
मान लीजिए .फिर , तो . और का उपयोग करके फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1
मान लें . ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1.1
फिर से लिखें.
चरण 2.2.1.1.2
को से विभाजित करें.
चरण 2.2.1.2
और का उपयोग करके समस्या को फिर से लिखें.
चरण 2.2.2
भिन्न को अनेक भिन्नों में विभाजित करें.
चरण 2.2.3
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.2.4
के संबंध में का इंटीग्रल है.
चरण 2.2.5
सरल करें.
चरण 2.2.6
की सभी घटनाओं को से बदलें.
चरण 2.3
दाएं पक्ष का समाकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.3.2
घात नियम के अनुसार, के संबंध में का समाकलन है.
चरण 2.3.3
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.3.1
को के रूप में फिर से लिखें.
चरण 2.3.3.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.3.2.1
और को मिलाएं.
चरण 2.3.3.2.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.3.2.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.3.2.2.2
व्यंजक को फिर से लिखें.
चरण 2.3.3.2.3
को से गुणा करें.
चरण 2.4
समाकलन के स्थिरांक को दाईं ओर के रूप में समूहित करें.
चरण 3
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.1.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 3.1.2.2
को से विभाजित करें.
चरण 3.1.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.1.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.3.1.1
ऋणात्मक को के भाजक से हटा दें.
चरण 3.1.3.1.2
को के रूप में फिर से लिखें.
चरण 3.1.3.1.3
ऋणात्मक को के भाजक से हटा दें.
चरण 3.1.3.1.4
को के रूप में फिर से लिखें.
चरण 3.2
के लिए हल करने के लिए, लघुगणक के गुणों का उपयोग करके समीकरण को फिर से लिखें.
चरण 3.3
लघुगणक की परिभाषा का उपयोग करते हुए को घातीय रूप में फिर से लिखें. अगर और धनात्मक वास्तविक संख्याएं हैं और , तो के बराबर है.
चरण 3.4
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.1
समीकरण को के रूप में फिर से लिखें.
चरण 3.4.2
निरपेक्ष मान पद को हटा दें. यह समीकरण के दाएं पक्ष की ओर एक बनाता है जो है.
चरण 3.4.3
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.4.4
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.4.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.4.4.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.4.4.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 3.4.4.2.2
को से विभाजित करें.
चरण 3.4.4.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.4.4.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.4.3.1.1
ऋणात्मक को के भाजक से हटा दें.
चरण 3.4.4.3.1.2
को के रूप में फिर से लिखें.
चरण 3.4.4.3.1.3
को से विभाजित करें.
चरण 4
स्थिर पदों को एक साथ समूहित करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
समाकलन की संतति को सरल करें.
चरण 4.2
को के रूप में फिर से लिखें.
चरण 4.3
और को पुन: क्रमित करें.
चरण 4.4
प्लस या माइनस के साथ स्थिरांक मिलाएं.