कैलकुलस उदाहरण

Solve the Differential Equation (dy)/(dx)=(cos(x))/(x^2)-(2y)/x
चरण 1
डिफरेन्शल इक्वेश़न को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 1.2
में से का गुणनखंड करें.
चरण 1.3
और को पुन: क्रमित करें.
चरण 2
समाकलित गुणनखंड को सूत्र द्वारा परिभाषित किया गया है, जहां है.
और स्टेप्स के लिए टैप करें…
चरण 2.1
समाकलन सेट करें.
चरण 2.2
को समाकलित करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.2.2
के संबंध में का इंटीग्रल है.
चरण 2.2.3
सरल करें.
चरण 2.3
समाकलन का स्थिरांक निकालें.
चरण 2.4
लघुगणक घात नियम का प्रयोग करें.
चरण 2.5
चरघातांक और लघुगणक व्युत्क्रम फलन होते हैं
चरण 3
प्रत्येक पद को समाकलन गुणनखंड से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
प्रत्येक पद को से गुणा करें.
चरण 3.2
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
और को मिलाएं.
चरण 3.2.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1
में से का गुणनखंड करें.
चरण 3.2.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.2.3
व्यंजक को फिर से लिखें.
चरण 3.2.3
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 3.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.2
व्यंजक को फिर से लिखें.
चरण 4
किसी गुणन में अंतर करने के परिणामस्वरूप बाईं ओर फिर से लिखें.
चरण 5
प्रत्येक पक्ष का एक समाकलन सेट करें.
चरण 6
बाएं पक्ष का समाकलन करें.
चरण 7
के संबंध में का इंटीग्रल है.
चरण 8
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 8.1
के प्रत्येक पद को से विभाजित करें.
चरण 8.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 8.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 8.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 8.2.1.2
को से विभाजित करें.