समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
को से अलग करें.
चरण 1.2
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.4
व्यंजक को सरल बनाएंं.
चरण 1.4.1
को के बाईं ओर ले जाएं.
चरण 1.4.2
गुणनखंडों को में पुन: क्रमित करें.
चरण 2
चरण 2.1
को से अलग करें.
चरण 2.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.3
का मान ज्ञात करें.
चरण 2.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.3.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 2.3.2.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 2.3.2.3
की सभी घटनाओं को से बदलें.
चरण 2.3.3
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.5
को से गुणा करें.
चरण 2.3.6
को के बाईं ओर ले जाएं.
चरण 2.3.7
को के बाईं ओर ले जाएं.
चरण 2.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.5
सरल करें.
चरण 2.5.1
और जोड़ें.
चरण 2.5.2
के गुणनखंडों को फिर से क्रमित करें.
चरण 2.5.3
गुणनखंडों को में पुन: क्रमित करें.
चरण 3
चरण 3.1
के लिए और के लिए प्रतिस्थापित करें.
चरण 3.2
चूँकि दोनों पक्षों को समतुल्य दिखाया गया है, समीकरण एक सर्वसमिका है.
एक सर्वसमिका है.
एक सर्वसमिका है.
चरण 4
को के इंटीग्रल के बराबर सेट करें.
चरण 5
चरण 5.1
एकल समाकलन को कई समाकलन में विभाजित करें.
चरण 5.2
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 5.3
घात नियम के अनुसार, के संबंध में का समाकलन है.
चरण 5.4
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 5.5
घात नियम के अनुसार, के संबंध में का समाकलन है.
चरण 5.6
सरल करें.
चरण 5.7
सरल करें.
चरण 5.7.1
और को मिलाएं.
चरण 5.7.2
और को मिलाएं.
चरण 5.7.3
और को मिलाएं.
चरण 5.7.4
और को मिलाएं.
चरण 5.7.5
और के उभयनिष्ठ गुणनखंड को रद्द करें.
चरण 5.7.5.1
में से का गुणनखंड करें.
चरण 5.7.5.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
चरण 5.7.5.2.1
में से का गुणनखंड करें.
चरण 5.7.5.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.7.5.2.3
व्यंजक को फिर से लिखें.
चरण 5.7.5.2.4
को से विभाजित करें.
चरण 5.8
पदों को पुन: व्यवस्थित करें
चरण 6
चूँकि के इंटिग्रल में इंटिग्रेशन स्थिरांक होगा, हम को से बदल सकते हैं.
चरण 7
सेट करें.
चरण 8
चरण 8.1
को से अलग करें.
चरण 8.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 8.3
का मान ज्ञात करें.
चरण 8.3.1
और को मिलाएं.
चरण 8.3.2
और को मिलाएं.
चरण 8.3.3
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 8.3.4
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 8.3.4.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 8.3.4.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 8.3.4.3
की सभी घटनाओं को से बदलें.
चरण 8.3.5
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 8.3.6
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 8.3.7
को से गुणा करें.
चरण 8.3.8
को के बाईं ओर ले जाएं.
चरण 8.3.9
और को मिलाएं.
चरण 8.3.10
और को मिलाएं.
चरण 8.3.11
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 8.3.11.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 8.3.11.2
को से विभाजित करें.
चरण 8.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 8.5
फलन नियम का उपयोग करके अंतर करें जो बताता है कि का व्युत्पन्न है.
चरण 8.6
सरल करें.
चरण 8.6.1
और जोड़ें.
चरण 8.6.2
पदों को पुन: व्यवस्थित करें
चरण 8.6.3
गुणनखंडों को में पुन: क्रमित करें.
चरण 9
चरण 9.1
के लिए हल करें.
चरण 9.1.1
गुणनखंडों को में पुन: क्रमित करें.
चरण 9.1.2
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
चरण 9.1.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 9.1.2.2
में से घटाएं.
चरण 10
चरण 10.1
के दोनों पक्षों को समाकलित करें.
चरण 10.2
का मान ज्ञात करें.
चरण 10.3
के संबंध में का इंटीग्रल है.
चरण 10.4
और जोड़ें.
चरण 11
में को प्रतिस्थापित करें.
चरण 12
चरण 12.1
प्रत्येक पद को सरल करें.
चरण 12.1.1
और को मिलाएं.
चरण 12.1.2
और को मिलाएं.
चरण 12.2
गुणनखंडों को में पुन: क्रमित करें.