कैलकुलस उदाहरण

Solve the Differential Equation dx+(x-y+6)dy=0
चरण 1
पता कीजिए जहां है.
और स्टेप्स के लिए टैप करें…
चरण 1.1
को से अलग करें.
चरण 1.2
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2
पता कीजिए जहां है.
और स्टेप्स के लिए टैप करें…
चरण 2.1
को से अलग करें.
चरण 2.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.5
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.6
पदों को मिलाएं.
और स्टेप्स के लिए टैप करें…
चरण 2.6.1
और जोड़ें.
चरण 2.6.2
और जोड़ें.
चरण 3
उस को जांचें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
के लिए और के लिए प्रतिस्थापित करें.
चरण 3.2
चूँकि बायाँ पक्ष दाएँ पक्ष के बराबर नहीं है, समीकरण एक सर्वसमिका नहीं है.
कोई सर्वसमिका नहीं है.
कोई सर्वसमिका नहीं है.
चरण 4
इंटिग्रेशन गुणनखंड खोजें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
को से प्रतिस्थापित करें.
चरण 4.2
को से प्रतिस्थापित करें.
चरण 4.3
को से प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
को से प्रतिस्थापित करें.
चरण 4.3.2
को से विभाजित करें.
चरण 4.3.3
को से प्रतिस्थापित करें.
चरण 4.4
इंटिग्रेशन गुणनखंड खोजें.
चरण 5
इंटिग्रल को पता करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
स्थिरांक नियम लागू करें.
चरण 5.2
सरल करें.
चरण 6
को से गुणा करें.
चरण 7
को के इंटीग्रल के बराबर सेट करें.
चरण 8
को खोजने के लिए को समाकलित करें.
और स्टेप्स के लिए टैप करें…
चरण 8.1
स्थिरांक नियम लागू करें.
चरण 9
चूँकि के इंटिग्रल में इंटिग्रेशन स्थिरांक होगा, हम को से बदल सकते हैं.
चरण 10
सेट करें.
चरण 11
पता करें.
और स्टेप्स के लिए टैप करें…
चरण 11.1
को से अलग करें.
चरण 11.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 11.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 11.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 11.3.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 11.4
फलन नियम का उपयोग करके अंतर करें जो बताता है कि का व्युत्पन्न है.
चरण 11.5
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 11.5.1
पदों को पुन: व्यवस्थित करें
चरण 11.5.2
गुणनखंडों को में पुन: क्रमित करें.
चरण 12
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 12.1
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 12.1.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 12.1.2
में विपरीत पदों को मिलाएं.
और स्टेप्स के लिए टैप करें…
चरण 12.1.2.1
में से घटाएं.
चरण 12.1.2.2
और जोड़ें.
चरण 13
को खोजने के लिए का विरोधी व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 13.1
के दोनों पक्षों को समाकलित करें.
चरण 13.2
का मान ज्ञात करें.
चरण 13.3
एकल समाकलन को कई समाकलन में विभाजित करें.
चरण 13.4
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 13.5
, जहां और सूत्र का उपयोग करके भागों द्वारा एकीकृत करें.
चरण 13.6
के संबंध में का इंटीग्रल है.
चरण 13.7
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 13.8
के संबंध में का इंटीग्रल है.
चरण 13.9
सरल करें.
चरण 13.10
और जोड़ें.
चरण 14
में को प्रतिस्थापित करें.
चरण 15
गुणनखंडों को में पुन: क्रमित करें.