समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
गुणनखंडों को पुनर्समूहन करें
चरण 1.2
दोनों पक्षों को से गुणा करें.
चरण 1.3
सरल करें.
चरण 1.3.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.3.1.1
में से का गुणनखंड करें.
चरण 1.3.1.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.3.1.3
व्यंजक को फिर से लिखें.
चरण 1.3.2
में से का गुणनखंड करें.
चरण 1.3.2.1
में से का गुणनखंड करें.
चरण 1.3.2.2
में से का गुणनखंड करें.
चरण 1.3.2.3
में से का गुणनखंड करें.
चरण 1.4
समीकरण को फिर से लिखें.
चरण 2
चरण 2.1
प्रत्येक पक्ष का एक समाकलन सेट करें.
चरण 2.2
बाएं पक्ष का समाकलन करें.
चरण 2.2.1
घातांक के बुनियादी नियम लागू करें.
चरण 2.2.1.1
को भाजक में से पावर तक बढ़ा कर हटा दें.
चरण 2.2.1.2
घातांक को में गुणा करें.
चरण 2.2.1.2.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.2.1.2.2
को से गुणा करें.
चरण 2.2.2
घात नियम के अनुसार, के संबंध में का समाकलन है.
चरण 2.2.3
को के रूप में फिर से लिखें.
चरण 2.3
दाएं पक्ष का समाकलन करें.
चरण 2.3.1
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.3.2
घातांक के बुनियादी नियम लागू करें.
चरण 2.3.2.1
को भाजक में से पावर तक बढ़ा कर हटा दें.
चरण 2.3.2.2
घातांक को में गुणा करें.
चरण 2.3.2.2.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.3.2.2.2
को से गुणा करें.
चरण 2.3.3
गुणा करें.
चरण 2.3.4
सरल करें.
चरण 2.3.4.1
घातांक जोड़कर को से गुणा करें.
चरण 2.3.4.1.1
को से गुणा करें.
चरण 2.3.4.1.1.1
को के घात तक बढ़ाएं.
चरण 2.3.4.1.1.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.3.4.1.2
में से घटाएं.
चरण 2.3.4.2
को से गुणा करें.
चरण 2.3.5
एकल समाकलन को कई समाकलन में विभाजित करें.
चरण 2.3.6
के संबंध में का इंटीग्रल है.
चरण 2.3.7
घात नियम के अनुसार, के संबंध में का समाकलन है.
चरण 2.3.8
सरल करें.
चरण 2.4
समाकलन के स्थिरांक को दाईं ओर के रूप में समूहित करें.
चरण 3
चरण 3.1
प्रत्येक पद का गुणनखंड करें.
चरण 3.1.1
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 3.1.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 3.1.3
और को मिलाएं.
चरण 3.2
समीकरण के पदों का LCD पता करें.
चरण 3.2.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 3.2.2
चूँकि में संख्याएँ और चर दोनों शामिल हैं, LCM को खोजने के लिए दो चरण हैं. संख्यात्मक भाग के लिए LCM खोजें फिर चर भाग के लिए LCM पता करें.
चरण 3.2.3
LCM (लघुत्तम समापवर्तक) सबसे छोटी धनात्मक संख्या है जिसे सभी संख्याएँ समान रूप से विभाजित करती हैं.
1. प्रत्येक संख्या के अभाज्य गुणनखंडों की सूची बनाइए.
2. प्रत्येक गुणनखंड को किसी भी संख्या में जितनी बार आता है उतनी बार गुणा करें.
चरण 3.2.4
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 3.2.5
का LCM (लघुत्तम समापवर्तक) सभी अभाज्य गुणन खंड में से किसी एक संख्या में आने वाली सबसे बड़ी संख्या को गुणा करने का परिणाम है.
चरण 3.2.6
का गुणनखंड ही है.
बार आता है.
चरण 3.2.7
का गुणनखंड ही है.
बार आता है.
चरण 3.2.8
का LCM (न्यूनतम सामान्य गुणक) सभी अभाज्य गुणन खंडों को किसी भी पद में जितनी बार वे आते हैं, गुणा करने का परिणाम है.
चरण 3.3
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
चरण 3.3.1
के प्रत्येक पद को से गुणा करें.
चरण 3.3.2
बाईं ओर को सरल बनाएंं.
चरण 3.3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.2.1.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 3.3.2.1.2
में से का गुणनखंड करें.
चरण 3.3.2.1.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.2.1.4
व्यंजक को फिर से लिखें.
चरण 3.3.3
दाईं ओर को सरल बनाएंं.
चरण 3.3.3.1
प्रत्येक पद को सरल करें.
चरण 3.3.3.1.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.3.1.1.1
में से का गुणनखंड करें.
चरण 3.3.3.1.1.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.3.1.1.3
व्यंजक को फिर से लिखें.
चरण 3.3.3.1.2
वितरण गुणधर्म लागू करें.
चरण 3.3.3.1.3
गुणा करें.
चरण 3.3.3.1.3.1
और को पुन: क्रमित करें.
चरण 3.3.3.1.3.2
को लघुगणक के अंदर ले जाकर को सरल करें.
चरण 3.3.3.1.4
को से गुणा करें.
चरण 3.3.3.1.5
में निरपेक्ष मान हटा दें क्योंकि सम घात वाले घातांक हमेशा धनात्मक होते हैं.
चरण 3.3.3.1.6
वितरण गुणधर्म लागू करें.
चरण 3.3.3.2
गुणनखंडों को में पुन: क्रमित करें.
चरण 3.4
समीकरण को हल करें.
चरण 3.4.1
समीकरण को के रूप में फिर से लिखें.
चरण 3.4.2
में से का गुणनखंड करें.
चरण 3.4.2.1
में से का गुणनखंड करें.
चरण 3.4.2.2
में से का गुणनखंड करें.
चरण 3.4.2.3
में से का गुणनखंड करें.
चरण 3.4.2.4
में से का गुणनखंड करें.
चरण 3.4.2.5
में से का गुणनखंड करें.
चरण 3.4.3
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 3.4.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.4.3.2
बाईं ओर को सरल बनाएंं.
चरण 3.4.3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.3.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.3.2.1.2
को से विभाजित करें.
चरण 3.4.3.3
दाईं ओर को सरल बनाएंं.
चरण 3.4.3.3.1
भिन्न के सामने ऋणात्मक ले जाएँ.