समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
दोनों पक्षों को से गुणा करें.
चरण 1.2
सरल करें.
चरण 1.2.1
जोड़ना.
चरण 1.2.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.2.2
व्यंजक को फिर से लिखें.
चरण 1.2.3
को से गुणा करें.
चरण 1.3
समीकरण को फिर से लिखें.
चरण 2
चरण 2.1
प्रत्येक पक्ष का एक समाकलन सेट करें.
चरण 2.2
के संबंध में का इंटीग्रल है.
चरण 2.3
दाएं पक्ष का समाकलन करें.
चरण 2.3.1
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.3.2
व्यंजक को सरल बनाएंं.
चरण 2.3.2.1
के घातांक को नकारें और भाजक से बाहर निकालें.
चरण 2.3.2.2
सरल करें.
चरण 2.3.2.2.1
घातांक को में गुणा करें.
चरण 2.3.2.2.1.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.3.2.2.1.2
को के बाईं ओर ले जाएं.
चरण 2.3.2.2.1.3
को के रूप में फिर से लिखें.
चरण 2.3.2.2.2
को से गुणा करें.
चरण 2.3.3
मान लीजिए .फिर , तो . और का उपयोग करके फिर से लिखें.
चरण 2.3.3.1
मान लें . ज्ञात करें.
चरण 2.3.3.1.1
को अवकलित करें.
चरण 2.3.3.1.2
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.3.1.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.3.1.4
को से गुणा करें.
चरण 2.3.3.2
और का उपयोग करके समस्या को फिर से लिखें.
चरण 2.3.4
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.3.5
को से गुणा करें.
चरण 2.3.6
के संबंध में का इंटीग्रल है.
चरण 2.3.7
सरल करें.
चरण 2.3.8
की सभी घटनाओं को से बदलें.
चरण 2.4
समाकलन के स्थिरांक को दाईं ओर के रूप में समूहित करें.
चरण 3
चरण 3.1
के लिए हल करने के लिए, लघुगणक के गुणों का उपयोग करके समीकरण को फिर से लिखें.
चरण 3.2
लघुगणक की परिभाषा का उपयोग करते हुए को घातीय रूप में फिर से लिखें. अगर और धनात्मक वास्तविक संख्याएं हैं और , तो के बराबर है.
चरण 3.3
के लिए हल करें.
चरण 3.3.1
समीकरण को के रूप में फिर से लिखें.
चरण 3.3.2
निरपेक्ष मान पद को हटा दें. यह समीकरण के दाएं पक्ष की ओर एक बनाता है जो है.
चरण 4
चरण 4.1
को के रूप में फिर से लिखें.
चरण 4.2
और को पुन: क्रमित करें.
चरण 4.3
प्लस या माइनस के साथ स्थिरांक मिलाएं.