कैलकुलस उदाहरण

Solve the Differential Equation y(8x-9y)dx+2x(x-3y)dy=0
चरण 1
पता कीजिए जहां है.
और स्टेप्स के लिए टैप करें…
चरण 1.1
को से अलग करें.
चरण 1.2
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.3
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.3.2
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.3
और जोड़ें.
चरण 1.3.4
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.5
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.6
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.3.6.1
को से गुणा करें.
चरण 1.3.6.2
को के बाईं ओर ले जाएं.
चरण 1.3.7
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.8
पदों को जोड़कर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.8.1
को से गुणा करें.
चरण 1.3.8.2
में से घटाएं.
चरण 2
पता कीजिए जहां है.
और स्टेप्स के लिए टैप करें…
चरण 2.1
को से अलग करें.
चरण 2.2
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.4
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.4.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.4.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.4.4
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.4.4.1
और जोड़ें.
चरण 2.4.4.2
को से गुणा करें.
चरण 2.4.5
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.4.6
पदों को जोड़कर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.6.1
को से गुणा करें.
चरण 2.4.6.2
और जोड़ें.
चरण 2.5
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.1
वितरण गुणधर्म लागू करें.
चरण 2.5.2
पदों को मिलाएं.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.1
को से गुणा करें.
चरण 2.5.2.2
को से गुणा करें.
चरण 3
उस को जांचें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
के लिए और के लिए प्रतिस्थापित करें.
चरण 3.2
चूँकि बायाँ पक्ष दाएँ पक्ष के बराबर नहीं है, समीकरण एक सर्वसमिका नहीं है.
कोई सर्वसमिका नहीं है.
कोई सर्वसमिका नहीं है.
चरण 4
इंटिग्रेशन गुणनखंड खोजें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
को से प्रतिस्थापित करें.
चरण 4.2
को से प्रतिस्थापित करें.
चरण 4.3
को से प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
को से प्रतिस्थापित करें.
चरण 4.3.2
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.2.1
में से का गुणनखंड करें.
चरण 4.3.2.2
में से का गुणनखंड करें.
चरण 4.3.2.3
में से का गुणनखंड करें.
चरण 4.3.2.4
में से का गुणनखंड करें.
चरण 4.3.2.5
को के रूप में फिर से लिखें.
चरण 4.3.2.6
में से का गुणनखंड करें.
चरण 4.3.2.7
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.2.7.1
में से का गुणनखंड करें.
चरण 4.3.2.7.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.3.2.7.3
व्यंजक को फिर से लिखें.
चरण 4.3.3
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.3.1
और जोड़ें.
चरण 4.3.3.2
में से घटाएं.
चरण 4.3.3.3
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.3.3.1
में से का गुणनखंड करें.
चरण 4.3.3.3.2
में से का गुणनखंड करें.
चरण 4.3.3.3.3
में से का गुणनखंड करें.
चरण 4.3.3.4
को से गुणा करें.
चरण 4.3.4
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.4.1
में से का गुणनखंड करें.
चरण 4.3.4.2
में से का गुणनखंड करें.
चरण 4.3.4.3
में से का गुणनखंड करें.
चरण 4.3.4.4
को के रूप में फिर से लिखें.
चरण 4.3.4.5
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.3.4.6
व्यंजक को फिर से लिखें.
चरण 4.3.5
को से गुणा करें.
चरण 4.4
इंटिग्रेशन गुणनखंड खोजें.
चरण 5
इंटिग्रल को पता करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 5.2
के संबंध में का इंटीग्रल है.
चरण 5.3
सरल करें.
चरण 5.4
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.4.1
को लघुगणक के अंदर ले जाकर को सरल करें.
चरण 5.4.2
चरघातांक और लघुगणक व्युत्क्रम फलन होते हैं
चरण 5.4.3
में निरपेक्ष मान हटा दें क्योंकि सम घात वाले घातांक हमेशा धनात्मक होते हैं.
चरण 6
के दोनों पक्षों को इंटिग्रेशन गुणनखंड से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
को से गुणा करें.
चरण 6.2
वितरण गुणधर्म लागू करें.
चरण 6.3
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 6.4
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 6.5
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 6.5.1
ले जाएं.
चरण 6.5.2
को से गुणा करें.
चरण 6.6
वितरण गुणधर्म लागू करें.
चरण 6.7
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 6.7.1
ले जाएं.
चरण 6.7.2
को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 6.7.2.1
को के घात तक बढ़ाएं.
चरण 6.7.2.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 6.7.3
और जोड़ें.
चरण 6.8
को से गुणा करें.
चरण 6.9
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 6.9.1
ले जाएं.
चरण 6.9.2
को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 6.9.2.1
को के घात तक बढ़ाएं.
चरण 6.9.2.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 6.9.3
और जोड़ें.
चरण 6.10
वितरण गुणधर्म लागू करें.
चरण 6.11
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 6.11.1
ले जाएं.
चरण 6.11.2
को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 6.11.2.1
को के घात तक बढ़ाएं.
चरण 6.11.2.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 6.11.3
और जोड़ें.
चरण 6.12
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 6.13
को से गुणा करें.
चरण 7
को के इंटीग्रल के बराबर सेट करें.
चरण 8
को खोजने के लिए को समाकलित करें.
और स्टेप्स के लिए टैप करें…
चरण 8.1
एकल समाकलन को कई समाकलन में विभाजित करें.
चरण 8.2
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 8.3
घात नियम के अनुसार, के संबंध में का समाकलन है.
चरण 8.4
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 8.5
घात नियम के अनुसार, के संबंध में का समाकलन है.
चरण 8.6
सरल करें.
चरण 8.7
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 8.7.1
और को मिलाएं.
चरण 8.7.2
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 8.7.2.1
में से का गुणनखंड करें.
चरण 8.7.2.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 8.7.2.2.1
में से का गुणनखंड करें.
चरण 8.7.2.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 8.7.2.2.3
व्यंजक को फिर से लिखें.
चरण 8.7.2.2.4
को से विभाजित करें.
चरण 8.7.3
और को मिलाएं.
चरण 8.7.4
और को मिलाएं.
चरण 8.7.5
और को मिलाएं.
चरण 8.7.6
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 8.7.6.1
में से का गुणनखंड करें.
चरण 8.7.6.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 8.7.6.2.1
में से का गुणनखंड करें.
चरण 8.7.6.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 8.7.6.2.3
व्यंजक को फिर से लिखें.
चरण 8.7.6.2.4
को से विभाजित करें.
चरण 9
चूँकि के इंटिग्रल में इंटिग्रेशन स्थिरांक होगा, हम को से बदल सकते हैं.
चरण 10
सेट करें.
चरण 11
पता करें.
और स्टेप्स के लिए टैप करें…
चरण 11.1
को से अलग करें.
चरण 11.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 11.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 11.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 11.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 11.3.3
को से गुणा करें.
चरण 11.4
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 11.4.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 11.4.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 11.4.3
को से गुणा करें.
चरण 11.5
फलन नियम का उपयोग करके अंतर करें जो बताता है कि का व्युत्पन्न है.
चरण 11.6
पदों को पुन: व्यवस्थित करें
चरण 12
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 12.1
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 12.1.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 12.1.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 12.1.3
में विपरीत पदों को मिलाएं.
और स्टेप्स के लिए टैप करें…
चरण 12.1.3.1
में से घटाएं.
चरण 12.1.3.2
और जोड़ें.
चरण 12.1.3.3
और जोड़ें.
चरण 13
को खोजने के लिए का विरोधी व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 13.1
के दोनों पक्षों को समाकलित करें.
चरण 13.2
का मान ज्ञात करें.
चरण 13.3
के संबंध में का इंटीग्रल है.
चरण 13.4
और जोड़ें.
चरण 14
में को प्रतिस्थापित करें.
चरण 15
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.