कैलकुलस उदाहरण

Solve the Differential Equation (1+e^xy+xe^xy)dx+(xe^x+2)dy=0
चरण 1
पता कीजिए जहां है.
और स्टेप्स के लिए टैप करें…
चरण 1.1
को से अलग करें.
चरण 1.2
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.2.2
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.3
को से गुणा करें.
चरण 1.4
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.4.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.4.3
को से गुणा करें.
चरण 1.5
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.1
और जोड़ें.
चरण 1.5.2
पदों को पुन: व्यवस्थित करें
चरण 1.5.3
गुणनखंडों को में पुन: क्रमित करें.
चरण 2
पता कीजिए जहां है.
और स्टेप्स के लिए टैप करें…
चरण 2.1
को से अलग करें.
चरण 2.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.3.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 2.3.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.4
को से गुणा करें.
चरण 2.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.5
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.1
और जोड़ें.
चरण 2.5.2
पदों को पुन: व्यवस्थित करें
चरण 2.5.3
गुणनखंडों को में पुन: क्रमित करें.
चरण 3
उस को जांचें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
के लिए और के लिए प्रतिस्थापित करें.
चरण 3.2
चूँकि दोनों पक्षों को समतुल्य दिखाया गया है, समीकरण एक सर्वसमिका है.
एक सर्वसमिका है.
एक सर्वसमिका है.
चरण 4
को के इंटीग्रल के बराबर सेट करें.
चरण 5
को खोजने के लिए को समाकलित करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
स्थिरांक नियम लागू करें.
चरण 6
चूँकि के इंटिग्रल में इंटिग्रेशन स्थिरांक होगा, हम को से बदल सकते हैं.
चरण 7
सेट करें.
चरण 8
पता करें.
और स्टेप्स के लिए टैप करें…
चरण 8.1
को से अलग करें.
चरण 8.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 8.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 8.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 8.3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 8.3.3
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 8.3.4
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 8.3.5
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 8.3.6
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 8.3.7
को से गुणा करें.
चरण 8.3.8
और जोड़ें.
चरण 8.4
फलन नियम का उपयोग करके अंतर करें जो बताता है कि का व्युत्पन्न है.
चरण 8.5
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 8.5.1
वितरण गुणधर्म लागू करें.
चरण 8.5.2
पदों को पुन: व्यवस्थित करें
चरण 8.5.3
गुणनखंडों को में पुन: क्रमित करें.
चरण 9
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1.1
गुणनखंडों को में पुन: क्रमित करें.
चरण 9.1.2
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 9.1.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 9.1.2.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 9.1.2.3
में विपरीत पदों को मिलाएं.
और स्टेप्स के लिए टैप करें…
चरण 9.1.2.3.1
में से घटाएं.
चरण 9.1.2.3.2
और जोड़ें.
चरण 9.1.2.3.3
में से घटाएं.
चरण 9.1.2.3.4
और जोड़ें.
चरण 10
को खोजने के लिए का विरोधी व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 10.1
के दोनों पक्षों को समाकलित करें.
चरण 10.2
का मान ज्ञात करें.
चरण 10.3
स्थिरांक नियम लागू करें.
चरण 11
में को प्रतिस्थापित करें.
चरण 12
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 12.1
वितरण गुणधर्म लागू करें.
चरण 12.2
गुणनखंडों को में पुन: क्रमित करें.