समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
दोनों पक्षों को से गुणा करें.
चरण 1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.2
व्यंजक को फिर से लिखें.
चरण 1.3
समीकरण को फिर से लिखें.
चरण 2
चरण 2.1
प्रत्येक पक्ष का एक समाकलन सेट करें.
चरण 2.2
बाएं पक्ष का समाकलन करें.
चरण 2.2.1
मान लीजिए .फिर , तो . और का उपयोग करके फिर से लिखें.
चरण 2.2.1.1
मान लें . ज्ञात करें.
चरण 2.2.1.1.1
को अवकलित करें.
चरण 2.2.1.1.2
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.1.1.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.1.1.4
को से गुणा करें.
चरण 2.2.1.2
और का उपयोग करके समस्या को फिर से लिखें.
चरण 2.2.2
और को मिलाएं.
चरण 2.2.3
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.2.4
के संबंध में का इंटीग्रल है.
चरण 2.2.5
सरल करें.
चरण 2.2.5.1
सरल करें.
चरण 2.2.5.2
और को मिलाएं.
चरण 2.2.6
की सभी घटनाओं को से बदलें.
चरण 2.2.7
पदों को पुन: व्यवस्थित करें
चरण 2.3
दाएं पक्ष का समाकलन करें.
चरण 2.3.1
मान लीजिए .फिर , तो . और का उपयोग करके फिर से लिखें.
चरण 2.3.1.1
मान लें . ज्ञात करें.
चरण 2.3.1.1.1
को अवकलित करें.
चरण 2.3.1.1.2
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.1.1.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.1.1.4
को से गुणा करें.
चरण 2.3.1.2
और का उपयोग करके समस्या को फिर से लिखें.
चरण 2.3.2
और को मिलाएं.
चरण 2.3.3
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.3.4
के संबंध में का इंटीग्रल है.
चरण 2.3.5
सरल करें.
चरण 2.3.6
की सभी घटनाओं को से बदलें.
चरण 2.4
समाकलन के स्थिरांक को दाईं ओर के रूप में समूहित करें.
चरण 3
चरण 3.1
को में बदलने के लिए दोहरा कोण सर्वसमिका का प्रयोग करें.
चरण 3.2
बाईं ओर को सरल बनाएंं.
चरण 3.2.1
को सरल करें.
चरण 3.2.1.1
वितरण गुणधर्म लागू करें.
चरण 3.2.1.2
को से गुणा करें.
चरण 3.2.1.3
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.3.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 3.2.1.3.2
में से का गुणनखंड करें.
चरण 3.2.1.3.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.3.4
व्यंजक को फिर से लिखें.
चरण 3.2.1.4
गुणा करें.
चरण 3.2.1.4.1
को से गुणा करें.
चरण 3.2.1.4.2
को से गुणा करें.
चरण 3.3
दाईं ओर को सरल बनाएंं.
चरण 3.3.1
प्रत्येक पद को सरल करें.
चरण 3.3.1.1
ज्या त्रि-कोण सर्वसमिका लागू करें.
चरण 3.3.1.2
वितरण गुणधर्म लागू करें.
चरण 3.3.1.3
गुणा करें.
चरण 3.3.1.3.1
और को मिलाएं.
चरण 3.3.1.3.2
और को मिलाएं.
चरण 3.3.1.4
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.1.4.1
में से का गुणनखंड करें.
चरण 3.3.1.4.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.1.4.3
व्यंजक को फिर से लिखें.
चरण 3.3.1.5
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 3.4
के लिए समीकरण को हल करें.
चरण 3.4.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.4.2
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 3.4.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3.4.3.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 3.4.3.2
ज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम ज्या लें.
चरण 3.4.3.3
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 3.4.3.4
ज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम ज्या लें.
चरण 3.4.3.5
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 4
समाकलन की संतति को सरल करें.