कैलकुलस उदाहरण

Solve the Differential Equation (dy)/(dx)=y/(2x)
चरण 1
चरों को अलग करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
दोनों पक्षों को से गुणा करें.
चरण 1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.2
व्यंजक को फिर से लिखें.
चरण 1.3
समीकरण को फिर से लिखें.
चरण 2
दोनों पक्षों को समाकलित करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
प्रत्येक पक्ष का एक समाकलन सेट करें.
चरण 2.2
के संबंध में का इंटीग्रल है.
चरण 2.3
दाएं पक्ष का समाकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.3.2
के संबंध में का इंटीग्रल है.
चरण 2.3.3
सरल करें.
चरण 2.4
समाकलन के स्थिरांक को दाईं ओर के रूप में समूहित करें.
चरण 3
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
और को मिलाएं.
चरण 3.2
लघुगणक वाले सभी पदों को समीकरण के बाईं पक्ष की ओर ले जाएँ.
चरण 3.3
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1.1.1
को के रूप में फिर से लिखें.
चरण 3.3.1.1.2
को लघुगणक के अंदर ले जाकर को सरल करें.
चरण 3.3.1.2
लघुगणक के भागफल गुण का प्रयोग करें.
चरण 3.4
के लिए हल करने के लिए, लघुगणक के गुणों का उपयोग करके समीकरण को फिर से लिखें.
चरण 3.5
लघुगणक की परिभाषा का उपयोग करते हुए को घातीय रूप में फिर से लिखें. अगर और धनात्मक वास्तविक संख्याएं हैं और , तो के बराबर है.
चरण 3.6
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.6.1
समीकरण को के रूप में फिर से लिखें.
चरण 3.6.2
दोनों पक्षों को से गुणा करें.
चरण 3.6.3
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.6.3.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.6.3.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.6.3.1.2
व्यंजक को फिर से लिखें.
चरण 3.6.4
निरपेक्ष मान पद को हटा दें. यह समीकरण के दाएं पक्ष की ओर एक बनाता है जो है.
चरण 4
स्थिर पदों को एक साथ समूहित करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
समाकलन की संतति को सरल करें.
चरण 4.2
प्लस या माइनस के साथ स्थिरांक मिलाएं.