कैलकुलस उदाहरण

Solve the Differential Equation 2y(dy)/(dx)=(cos(x))/(1+sin(x))
चरण 1
समीकरण को फिर से लिखें.
चरण 2
दोनों पक्षों को समाकलित करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
प्रत्येक पक्ष का एक समाकलन सेट करें.
चरण 2.2
बाएं पक्ष का समाकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.2.2
घात नियम के अनुसार, के संबंध में का समाकलन है.
चरण 2.2.3
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.1
को के रूप में फिर से लिखें.
चरण 2.2.3.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.2.1
और को मिलाएं.
चरण 2.2.3.2.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.2.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.3.2.2.2
व्यंजक को फिर से लिखें.
चरण 2.2.3.2.3
को से गुणा करें.
चरण 2.3
दाएं पक्ष का समाकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
मान लीजिए .फिर , तो . और का उपयोग करके फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.1
मान लें . ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.1.1
को अवकलित करें.
चरण 2.3.1.1.2
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.1.2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.3.1.1.2.2
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.1.1.3
के संबंध में का व्युत्पन्न है.
चरण 2.3.1.1.4
और जोड़ें.
चरण 2.3.1.2
और का उपयोग करके समस्या को फिर से लिखें.
चरण 2.3.2
के संबंध में का इंटीग्रल है.
चरण 2.3.3
की सभी घटनाओं को से बदलें.
चरण 2.4
समाकलन के स्थिरांक को दाईं ओर के रूप में समूहित करें.
चरण 3
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 3.2
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 3.2.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 3.2.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.