समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
चरण 1.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 1.1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
चरण 1.1.2.1
सीमा का मूल्यांकन करें.
चरण 1.1.2.1.1
रेडिकल साइन के तहत सीमा को स्थानांतरित करें.
चरण 1.1.2.1.2
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.1.2.1.3
सीमा घात नियम का उपयोग करके घातांक को से सीमा से बाभाजक ले जाएं.
चरण 1.1.2.1.4
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 1.1.2.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.2.3
उत्तर को सरल करें.
चरण 1.1.2.3.1
को के घात तक बढ़ाएं.
चरण 1.1.2.3.2
को से गुणा करें.
चरण 1.1.2.3.3
में से घटाएं.
चरण 1.1.2.3.4
को के रूप में फिर से लिखें.
चरण 1.1.2.3.5
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 1.1.3
भाजक की सीमा का मान ज्ञात करें.
चरण 1.1.3.1
सीमा का मूल्यांकन करें.
चरण 1.1.3.1.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.1.3.1.2
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 1.1.3.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.3.3
उत्तर को सरल करें.
चरण 1.1.3.3.1
को से गुणा करें.
चरण 1.1.3.3.2
में से घटाएं.
चरण 1.1.3.3.3
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.1.3.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.1.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 1.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
चरण 1.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 1.3.2
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 1.3.3
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.3.3.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.3.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.3.3
की सभी घटनाओं को से बदलें.
चरण 1.3.4
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 1.3.5
और को मिलाएं.
चरण 1.3.6
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.3.7
न्यूमेरेटर को सरल करें.
चरण 1.3.7.1
को से गुणा करें.
चरण 1.3.7.2
में से घटाएं.
चरण 1.3.8
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.3.9
और को मिलाएं.
चरण 1.3.10
ऋणात्मक घातांक नियम का उपयोग करके को भाजक में ले जाएँ.
चरण 1.3.11
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.3.12
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.13
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.14
और जोड़ें.
चरण 1.3.15
और को मिलाएं.
चरण 1.3.16
और को मिलाएं.
चरण 1.3.17
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.3.18
व्यंजक को फिर से लिखें.
चरण 1.3.19
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.3.20
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.21
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.22
और जोड़ें.
चरण 1.4
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 1.5
को के रूप में फिर से लिखें.
चरण 1.6
को से गुणा करें.
चरण 2
चूंकि न्यूमेरेटर धनात्मक है और भाजक शून्य के करीब पहुंचता है और के लिए के पास दाईं ओर शून्य से अधिक है, फलन बिना सीमा के बढ़ता है.