बेसिक मैथ उदाहरण

सरल कीजिए 1/(a^2-1)+(a-1)/(a^2+3a-4)
चरण 1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
भाजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
को के रूप में फिर से लिखें.
चरण 1.1.2
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 1.2
AC विधि का उपयोग करके का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 1.2.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 1.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.3.2
व्यंजक को फिर से लिखें.
चरण 2
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 3
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 4
प्रत्येक व्यंजक को के सामान्य भाजक के साथ लिखें, प्रत्येक को के उपयुक्त गुणनखंड से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
को से गुणा करें.
चरण 4.2
को से गुणा करें.
चरण 4.3
के गुणनखंडों को फिर से क्रमित करें.
चरण 4.4
के गुणनखंडों को फिर से क्रमित करें.
चरण 5
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 6
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
FOIL विधि का उपयोग करके का प्रसार करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1.1
वितरण गुणधर्म लागू करें.
चरण 6.1.2
वितरण गुणधर्म लागू करें.
चरण 6.1.3
वितरण गुणधर्म लागू करें.
चरण 6.2
समान पदों को सरल और संयोजित करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1.1
को से गुणा करें.
चरण 6.2.1.2
को के बाईं ओर ले जाएं.
चरण 6.2.1.3
को के रूप में फिर से लिखें.
चरण 6.2.1.4
को से गुणा करें.
चरण 6.2.1.5
को से गुणा करें.
चरण 6.2.2
और जोड़ें.
चरण 6.2.3
और जोड़ें.
चरण 6.3
में से घटाएं.
चरण 6.4
पदों को पुन: व्यवस्थित करें