समस्या दर्ज करें...
बेसिक मैथ उदाहरण
चरण 1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2
समीकरण के दोनों पक्षों से घटाएं.
चरण 3
चरण 3.1
को के रूप में फिर से लिखें.
चरण 3.2
चूंकि दोनों पद पूर्ण घन हैं, घन सूत्र के अंतर का उपयोग करने वाले गुणनखंड जहाँ और हैं.
चरण 3.3
सरल करें.
चरण 3.3.1
को से गुणा करें.
चरण 3.3.2
एक का कोई भी घात एक होता है.
चरण 4
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 5
चरण 5.1
को के बराबर सेट करें.
चरण 5.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 6
चरण 6.1
को के बराबर सेट करें.
चरण 6.2
के लिए हल करें.
चरण 6.2.1
हल पता करने के लिए द्विघात सूत्र का प्रयोग करें.
चरण 6.2.2
द्विघात सूत्र में , और मानों को प्रतिस्थापित करें और के लिए हल करें.
चरण 6.2.3
सरल करें.
चरण 6.2.3.1
न्यूमेरेटर को सरल करें.
चरण 6.2.3.1.1
एक का कोई भी घात एक होता है.
चरण 6.2.3.1.2
गुणा करें.
चरण 6.2.3.1.2.1
को से गुणा करें.
चरण 6.2.3.1.2.2
को से गुणा करें.
चरण 6.2.3.1.3
में से घटाएं.
चरण 6.2.3.1.4
को के रूप में फिर से लिखें.
चरण 6.2.3.1.5
को के रूप में फिर से लिखें.
चरण 6.2.3.1.6
को के रूप में फिर से लिखें.
चरण 6.2.3.2
को से गुणा करें.
चरण 6.2.4
अंतिम उत्तर दोनों हलों का संयोजन है.
चरण 7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.