समस्या दर्ज करें...
बेसिक मैथ उदाहरण
चरण 1
समीकरण को के रूप में फिर से लिखें.
चरण 2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3
चरण 3.1
को के रूप में फिर से लिखें.
चरण 3.2
को के रूप में फिर से लिखें.
चरण 3.3
को के रूप में फिर से लिखें.
चरण 3.4
चूंकि दोनों पद पूर्ण घन हैं, घन सूत्र के योग का उपयोग करके गुणनखंड करें, जहाँ और .
चरण 3.5
सरल करें.
चरण 3.5.1
और को मिलाएं.
चरण 3.5.2
उत्पाद नियम को पर लागू करें.
चरण 3.5.3
एक का कोई भी घात एक होता है.
चरण 3.5.4
को के घात तक बढ़ाएं.
चरण 4
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 5
चरण 5.1
को के बराबर सेट करें.
चरण 5.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 6
चरण 6.1
को के बराबर सेट करें.
चरण 6.2
के लिए हल करें.
चरण 6.2.1
लघुत्तम सामान्य भाजक से गुणा करें, और फिर सरल करें.
चरण 6.2.1.1
वितरण गुणधर्म लागू करें.
चरण 6.2.1.2
सरल करें.
चरण 6.2.1.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.2.1.2.1.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 6.2.1.2.1.2
में से का गुणनखंड करें.
चरण 6.2.1.2.1.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.2.1.2.1.4
व्यंजक को फिर से लिखें.
चरण 6.2.1.2.2
को से गुणा करें.
चरण 6.2.1.2.3
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.2.1.2.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.2.1.2.3.2
व्यंजक को फिर से लिखें.
चरण 6.2.2
हल पता करने के लिए द्विघात सूत्र का प्रयोग करें.
चरण 6.2.3
द्विघात सूत्र में , और मानों को प्रतिस्थापित करें और के लिए हल करें.
चरण 6.2.4
सरल करें.
चरण 6.2.4.1
न्यूमेरेटर को सरल करें.
चरण 6.2.4.1.1
को के घात तक बढ़ाएं.
चरण 6.2.4.1.2
गुणा करें.
चरण 6.2.4.1.2.1
को से गुणा करें.
चरण 6.2.4.1.2.2
को से गुणा करें.
चरण 6.2.4.1.3
में से घटाएं.
चरण 6.2.4.1.4
को के रूप में फिर से लिखें.
चरण 6.2.4.1.5
को के रूप में फिर से लिखें.
चरण 6.2.4.1.6
को के रूप में फिर से लिखें.
चरण 6.2.4.1.7
को के रूप में फिर से लिखें.
चरण 6.2.4.1.7.1
में से का गुणनखंड करें.
चरण 6.2.4.1.7.2
को के रूप में फिर से लिखें.
चरण 6.2.4.1.8
करणी से पदों को बाहर निकालें.
चरण 6.2.4.1.9
को के बाईं ओर ले जाएं.
चरण 6.2.4.2
को से गुणा करें.
चरण 6.2.4.3
को सरल करें.
चरण 6.2.5
अंतिम उत्तर दोनों हलों का संयोजन है.
चरण 7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.