समस्या दर्ज करें...
बेसिक मैथ उदाहरण
चरण 1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2
समीकरण में प्रतिस्थापित करें. इससे द्विघात सूत्र का उपयोग करना आसान हो जाएगा.
चरण 3
चरण 3.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 3.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 4
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 5
चरण 5.1
को के बराबर सेट करें.
चरण 5.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 6
चरण 6.1
को के बराबर सेट करें.
चरण 6.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 8
हल किए गए समीकरण में के वास्तविक मान को वापस प्रतिस्थापित करें.
चरण 9
के लिए पहला समीकरण हल करें.
चरण 10
चरण 10.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
चरण 10.2
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 10.2.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 10.2.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 10.2.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 11
का मान ज्ञात करने के लिए दूसरा समीकरण हल करें.
चरण 12
चरण 12.1
कोष्ठक हटा दें.
चरण 12.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
चरण 12.3
का कोई भी मूल होता है.
चरण 12.4
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 12.4.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 12.4.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 12.4.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 13
का हल है.
चरण 14
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: