समस्या दर्ज करें...
बेसिक मैथ उदाहरण
चरण 1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2
चरण 2.1
में से का गुणनखंड करें.
चरण 2.2
में से का गुणनखंड करें.
चरण 2.3
में से का गुणनखंड करें.
चरण 3
चरण 3.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 3.2
LCM (लघुत्तम समापवर्तक) सबसे छोटी धनात्मक संख्या है जिसे सभी संख्याएँ समान रूप से विभाजित करती हैं.
1. प्रत्येक संख्या के अभाज्य गुणनखंडों की सूची बनाइए.
2. प्रत्येक गुणनखंड को किसी भी संख्या में जितनी बार आता है उतनी बार गुणा करें.
चरण 3.3
चूंकि का और के अलावा कोई गुणनखंड नहीं है.
एक अभाज्य संख्या है
चरण 3.4
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 3.5
का LCM (लघुत्तम समापवर्तक) सभी अभाज्य गुणन खंड में से किसी एक संख्या में आने वाली सबसे बड़ी संख्या को गुणा करने का परिणाम है.
चरण 3.6
का गुणनखंड ही है.
बार आता है.
चरण 3.7
का LCM (न्यूनतम सामान्य गुणक) सभी गुणनखंडों को किसी भी पद में सबसे बड़ी संख्या में गुणा करने का परिणाम है.
चरण 3.8
कुछ संख्याओं का लघुत्तम समापवर्तक वह सबसे छोटी संख्या होती है, जिसके गुणनखंड होते हैं.
चरण 4
चरण 4.1
के प्रत्येक पद को से गुणा करें.
चरण 4.2
बाईं ओर को सरल बनाएंं.
चरण 4.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.1.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 4.2.1.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.1.3
व्यंजक को फिर से लिखें.
चरण 4.3
दाईं ओर को सरल बनाएंं.
चरण 4.3.1
प्रत्येक पद को सरल करें.
चरण 4.3.1.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.3.1.1.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 4.3.1.1.2
में से का गुणनखंड करें.
चरण 4.3.1.1.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.3.1.1.4
व्यंजक को फिर से लिखें.
चरण 4.3.1.2
को से गुणा करें.
चरण 4.3.1.3
वितरण गुणधर्म लागू करें.
चरण 4.3.1.4
को से गुणा करें.
चरण 4.3.1.5
वितरण गुणधर्म लागू करें.
चरण 4.3.1.6
को से गुणा करें.
चरण 4.3.1.7
को से गुणा करें.
चरण 4.3.2
और जोड़ें.
चरण 5
चरण 5.1
समीकरण को के रूप में फिर से लिखें.
चरण 5.2
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
चरण 5.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 5.2.2
और जोड़ें.
चरण 5.3
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 5.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 5.3.2
बाईं ओर को सरल बनाएंं.
चरण 5.3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.3.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.3.2.1.2
को से विभाजित करें.
चरण 5.3.3
दाईं ओर को सरल बनाएंं.
चरण 5.3.3.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 6
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप:
मिश्रित संख्या रूप: