बेसिक मैथ उदाहरण

चरण 1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
और को मिलाएं.
चरण 1.2
और को मिलाएं.
चरण 1.3
को के बाईं ओर ले जाएं.
चरण 2
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
के प्रत्येक पद को से गुणा करें.
चरण 2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.1.2
व्यंजक को फिर से लिखें.
चरण 2.2.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.2.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 2.2.1.2.2
में से का गुणनखंड करें.
चरण 2.2.1.2.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.2.4
व्यंजक को फिर से लिखें.
चरण 2.2.1.3
को से गुणा करें.
चरण 2.2.1.4
को से गुणा करें.
चरण 2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
को से गुणा करें.
चरण 3
AC विधि का उपयोग करके का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 3.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 4
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
को के बराबर सेट करें.
चरण 5.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 6
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
को के बराबर सेट करें.
चरण 6.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.