एलजेब्रा उदाहरण

दो बिंदुओं के बीच की दूरी खोजें (1,1/2) , (1/3,2)
,
चरण 1
दो बिंदुओं के बीच की दूरी निर्धारित करने के लिए दूरी सूत्र का उपयोग करें.
चरण 2
बिंदुओं के वास्तविक मानों को दूरी सूत्र में प्रतिस्थापित करें.
चरण 3
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 3.2
और को मिलाएं.
चरण 3.3
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 3.4
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.1
को से गुणा करें.
चरण 3.4.2
में से घटाएं.
चरण 3.5
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 3.6
घातांक वितरण करने के लिए घात नियम का उपयोग करें.
और स्टेप्स के लिए टैप करें…
चरण 3.6.1
उत्पाद नियम को पर लागू करें.
चरण 3.6.2
उत्पाद नियम को पर लागू करें.
चरण 3.7
को के घात तक बढ़ाएं.
चरण 3.8
को से गुणा करें.
चरण 3.9
को के घात तक बढ़ाएं.
चरण 3.10
को के घात तक बढ़ाएं.
चरण 3.11
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 3.12
और को मिलाएं.
चरण 3.13
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 3.14
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.14.1
को से गुणा करें.
चरण 3.14.2
में से घटाएं.
चरण 3.15
उत्पाद नियम को पर लागू करें.
चरण 3.16
को के घात तक बढ़ाएं.
चरण 3.17
को के घात तक बढ़ाएं.
चरण 3.18
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 3.19
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 3.20
प्रत्येक व्यंजक को के सामान्य भाजक के साथ लिखें, प्रत्येक को के उपयुक्त गुणनखंड से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.20.1
को से गुणा करें.
चरण 3.20.2
को से गुणा करें.
चरण 3.20.3
को से गुणा करें.
चरण 3.20.4
को से गुणा करें.
चरण 3.21
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 3.22
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.22.1
को से गुणा करें.
चरण 3.22.2
को से गुणा करें.
चरण 3.22.3
और जोड़ें.
चरण 3.23
को के रूप में फिर से लिखें.
चरण 3.24
भाजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.24.1
को के रूप में फिर से लिखें.
चरण 3.24.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 4
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप:
चरण 5