एलजेब्रा उदाहरण

x और y प्रतिच्छेद ज्ञात करें x+4+2 का y=-3 लघुगणक बेस 2
चरण 1
x- अंत:खंड ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
x- अंत:खंड(अंत:खंडों) को ज्ञात करने के लिए, में को प्रतिस्थापित करें और को हल करें.
चरण 1.2
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
समीकरण को के रूप में फिर से लिखें.
चरण 1.2.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.2.3
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 1.2.3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.2.3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.3.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.3.2.1.2
को से विभाजित करें.
चरण 1.2.3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.2.3.3.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 1.2.4
लघुगणक की परिभाषा का उपयोग करते हुए को घातीय रूप में फिर से लिखें. अगर और धनात्मक वास्तविक संख्याएं हैं और , तो के बराबर है.
चरण 1.2.5
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.5.1
समीकरण को के रूप में फिर से लिखें.
चरण 1.2.5.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.3
x- अंत:खंड(अंत:खंडों) एक बिन्दु के रूप में.
x- अंत:खंड(अंत:खंडों):
x- अंत:खंड(अंत:खंडों):
चरण 2
y- अंत:खंड पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
y- अंत:खंड (ओं) को ज्ञात करने के लिए, में को प्रतिस्थापित करें और को हल करें.
चरण 2.2
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
कोष्ठक हटा दें.
चरण 2.2.2
कोष्ठक हटा दें.
चरण 2.2.3
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.1.1
और जोड़ें.
चरण 2.2.3.1.2
का लघुगणक बेस है.
चरण 2.2.3.1.3
को से गुणा करें.
चरण 2.2.3.2
और जोड़ें.
चरण 2.3
y- अंत:खंड(अंत:खंडों) एक बिन्दु के रूप में.
y- अंत:खंड(अंत:खंडों):
y- अंत:खंड(अंत:खंडों):
चरण 3
प्रतिच्छेदनों को सूचीबद्ध करें.
x- अंत:खंड(अंत:खंडों):
y- अंत:खंड(अंत:खंडों):
चरण 4