एलजेब्रा उदाहरण

गुणनखण्ड करके हल कीजिये x^4-5x^2-36=0
चरण 1
को के रूप में फिर से लिखें.
चरण 2
मान लीजिए . की सभी घटनाओं के लिए को प्रतिस्थापित करें.
चरण 3
AC विधि का उपयोग करके का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 3.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 4
की सभी घटनाओं को से बदलें.
चरण 5
को के रूप में फिर से लिखें.
चरण 6
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 7
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 8
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 8.1
को के बराबर सेट करें.
चरण 8.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 9
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1
को के बराबर सेट करें.
चरण 9.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 10
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.1
को के बराबर सेट करें.
चरण 10.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 10.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
चरण 10.2.3
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.2.3.1
को के रूप में फिर से लिखें.
चरण 10.2.3.2
को के रूप में फिर से लिखें.
चरण 10.2.3.3
को के रूप में फिर से लिखें.
चरण 10.2.3.4
को के रूप में फिर से लिखें.
चरण 10.2.3.5
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 10.2.3.6
को के बाईं ओर ले जाएं.
चरण 10.2.4
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 10.2.4.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 10.2.4.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 10.2.4.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 11
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.