एलजेब्रा उदाहरण

रेखा-चित्र y = log base 2 of x-1
चरण 1
अनन्तस्पर्शी पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
लघुगणक के कथन को शून्य के बराबर सेट करें.
चरण 1.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 1.3
ऊर्ध्वाधर अनंतस्पर्शी पर होता है.
ऊर्ध्वाधर अनंतस्पर्शी:
ऊर्ध्वाधर अनंतस्पर्शी:
चरण 2
पर बिंदु पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
व्यंजक में चर को से बदलें.
चरण 2.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
में से घटाएं.
चरण 2.2.2
का लघुगणक बेस है.
चरण 2.2.3
अंतिम उत्तर है.
चरण 2.3
को दशमलव में बदलें.
चरण 3
पर बिंदु पता करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
व्यंजक में चर को से बदलें.
चरण 3.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
में से घटाएं.
चरण 3.2.2
का लघुगणक बेस है.
चरण 3.2.3
अंतिम उत्तर है.
चरण 3.3
को दशमलव में बदलें.
चरण 4
पर बिंदु पता करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
व्यंजक में चर को से बदलें.
चरण 4.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
में से घटाएं.
चरण 4.2.2
का लघुगणक बेस है.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1
एक समीकरण के रूप में फिर से लिखें.
चरण 4.2.2.2
लघुगणक की परिभाषा का उपयोग करते हुए को घातीय रूप में फिर से लिखें. यदि और धनात्मक वास्तविक संख्याएँ हैं और के बराबर नहीं है, तो के बराबर है.
चरण 4.2.2.3
समीकरण में ऐसे तुल्यांकी व्यंजक बनाएंँ जिनका आधार समान हो.
चरण 4.2.2.4
चूंकि आधार समान हैं, दोनों व्यंजक केवल तभी बराबर होते हैं जब घातांक भी बराबर हों.
चरण 4.2.2.5
चर के बराबर है.
चरण 4.2.3
अंतिम उत्तर है.
चरण 4.3
को दशमलव में बदलें.
चरण 5
लघुगणक फलन को पर ऊर्ध्वाधर अनंतस्पर्शी और बिंदुओं का उपयोग करके ग्राफ किया जा सकता है.
ऊर्ध्वाधर अनंतस्पर्शी:
चरण 6