एलजेब्रा उदाहरण

चरण 1
समीकरण को के रूप में फिर से लिखें.
चरण 2
को के घात तक बढ़ाएं.
चरण 3
ऋणात्मक घातांक नियम का उपयोग करके को न्यूमेरेटर में ले जाएं.
चरण 4
समीकरण में ऐसे तुल्यांकी व्यंजक बनाएंँ जिनका आधार समान हो.
चरण 5
चूंकि आधार समान हैं, तो दो व्यंजक केवल तभी बराबर होते हैं जब घातांक भी बराबर हों.
चरण 6
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1.1
के प्रत्येक पद को से विभाजित करें.
चरण 6.1.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.1.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.1.2.1.2
को से विभाजित करें.
चरण 6.1.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.1.3.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 6.2
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 6.2.2
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 6.2.3
और को मिलाएं.
चरण 6.2.4
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 6.2.5
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.5.1
को से गुणा करें.
चरण 6.2.5.2
और जोड़ें.
चरण 6.3
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 6.3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 6.3.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.3.2.1.2
को से विभाजित करें.
चरण 6.3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.3.3.1
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 6.3.3.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 6.3.3.2.1
को से गुणा करें.
चरण 6.3.3.2.2
को से गुणा करें.
चरण 7
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: