एलजेब्रा उदाहरण

Equationsのシステムを求めなさい。 2x^2+3y^2=19 2x^2+y^2=9
चरण 1
के लिए में हल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.2
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 1.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 1.3.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 1.3.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 2
सिस्टम को हल करें .
और स्टेप्स के लिए टैप करें…
चरण 2.1
प्रत्येक समीकरण में की सभी घटनाओं को से बदलें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
की सभी घटनाओं को में से बदलें.
चरण 2.1.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1.1.1
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1.1.1.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 2.1.2.1.1.1.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.1.2.1.1.1.3
और को मिलाएं.
चरण 2.1.2.1.1.1.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1.1.1.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.1.2.1.1.1.4.2
व्यंजक को फिर से लिखें.
चरण 2.1.2.1.1.1.5
सरल करें.
चरण 2.1.2.1.1.2
वितरण गुणधर्म लागू करें.
चरण 2.1.2.1.1.3
को से गुणा करें.
चरण 2.1.2.1.1.4
को से गुणा करें.
चरण 2.1.2.1.2
में से घटाएं.
चरण 2.2
के लिए में हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.2.1.2
में से घटाएं.
चरण 2.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.2.2.1.2
को से विभाजित करें.
चरण 2.2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.3.1
को से विभाजित करें.
चरण 2.2.3
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 2.2.4
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 2.2.4.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 2.2.4.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 2.2.4.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 2.3
प्रत्येक समीकरण में की सभी घटनाओं को से बदलें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
की सभी घटनाओं को में से बदलें.
चरण 2.3.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1.1
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1.1.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 2.3.2.1.1.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.3.2.1.1.3
और को मिलाएं.
चरण 2.3.2.1.1.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1.1.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.2.1.1.4.2
व्यंजक को फिर से लिखें.
चरण 2.3.2.1.1.5
घातांक का मान ज्ञात करें.
चरण 2.3.2.1.2
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1.2.1
को से गुणा करें.
चरण 2.3.2.1.2.2
में से घटाएं.
चरण 2.4
प्रत्येक समीकरण में की सभी घटनाओं को से बदलें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
की सभी घटनाओं को में से बदलें.
चरण 2.4.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.1.1
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.1.1.1
उत्पाद नियम को पर लागू करें.
चरण 2.4.2.1.1.2
को के घात तक बढ़ाएं.
चरण 2.4.2.1.1.3
को से गुणा करें.
चरण 2.4.2.1.2
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.1.2.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 2.4.2.1.2.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.4.2.1.2.3
और को मिलाएं.
चरण 2.4.2.1.2.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.1.2.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.4.2.1.2.4.2
व्यंजक को फिर से लिखें.
चरण 2.4.2.1.2.5
घातांक का मान ज्ञात करें.
चरण 2.4.2.1.3
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.1.3.1
को से गुणा करें.
चरण 2.4.2.1.3.2
में से घटाएं.
चरण 3
सिस्टम को हल करें .
और स्टेप्स के लिए टैप करें…
चरण 3.1
प्रत्येक समीकरण में की सभी घटनाओं को से बदलें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
की सभी घटनाओं को में से बदलें.
चरण 3.1.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.1.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.1.1.1
उत्पाद नियम को पर लागू करें.
चरण 3.1.2.1.1.2
को के घात तक बढ़ाएं.
चरण 3.1.2.1.1.3
को से गुणा करें.
चरण 3.1.2.1.1.4
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.1.1.4.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 3.1.2.1.1.4.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 3.1.2.1.1.4.3
और को मिलाएं.
चरण 3.1.2.1.1.4.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.1.1.4.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.1.2.1.1.4.4.2
व्यंजक को फिर से लिखें.
चरण 3.1.2.1.1.4.5
सरल करें.
चरण 3.1.2.1.1.5
वितरण गुणधर्म लागू करें.
चरण 3.1.2.1.1.6
को से गुणा करें.
चरण 3.1.2.1.1.7
को से गुणा करें.
चरण 3.1.2.1.2
में से घटाएं.
चरण 3.2
के लिए में हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.2.1.2
में से घटाएं.
चरण 3.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.2.2.1.2
को से विभाजित करें.
चरण 3.2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.3.1
को से विभाजित करें.
चरण 3.2.3
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 3.2.4
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 3.2.4.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 3.2.4.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 3.2.4.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3.3
प्रत्येक समीकरण में की सभी घटनाओं को से बदलें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
की सभी घटनाओं को में से बदलें.
चरण 3.3.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.1.1
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.1.1.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 3.3.2.1.1.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 3.3.2.1.1.3
और को मिलाएं.
चरण 3.3.2.1.1.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.1.1.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.2.1.1.4.2
व्यंजक को फिर से लिखें.
चरण 3.3.2.1.1.5
घातांक का मान ज्ञात करें.
चरण 3.3.2.1.2
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.1.2.1
को से गुणा करें.
चरण 3.3.2.1.2.2
में से घटाएं.
चरण 3.4
प्रत्येक समीकरण में की सभी घटनाओं को से बदलें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.1
की सभी घटनाओं को में से बदलें.
चरण 3.4.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.1.1
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.1.1.1
उत्पाद नियम को पर लागू करें.
चरण 3.4.2.1.1.2
को के घात तक बढ़ाएं.
चरण 3.4.2.1.1.3
को से गुणा करें.
चरण 3.4.2.1.2
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.1.2.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 3.4.2.1.2.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 3.4.2.1.2.3
और को मिलाएं.
चरण 3.4.2.1.2.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.1.2.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.2.1.2.4.2
व्यंजक को फिर से लिखें.
चरण 3.4.2.1.2.5
घातांक का मान ज्ञात करें.
चरण 3.4.2.1.3
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.1.3.1
को से गुणा करें.
चरण 3.4.2.1.3.2
में से घटाएं.
चरण 4
सिस्टम का हल क्रमित युग्म का पूरा सेट है जो मान्य हल हैं.
चरण 5
परिणाम कई रूपों में दिखाया जा सकता है.
बिन्दू रूप:
समीकरण रूप:
चरण 6