एलजेब्रा उदाहरण

चरण 1
असमानता के दोनों पक्षों से घटाएं.
चरण 2
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 2.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 2.3
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
वितरण गुणधर्म लागू करें.
चरण 2.3.2
को से गुणा करें.
चरण 2.3.3
को से गुणा करें.
चरण 2.3.4
AC विधि का उपयोग करके का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.4.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 2.3.4.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 3
प्रत्येक गुणनखंड को के बराबर रखकर और उसे हल करके ऐसे सभी मान पता करें जहाँ व्यंजक नकारात्मक से सकारात्मक में परिवर्तित होता है.
चरण 4
समीकरण के दोनों पक्षों में जोड़ें.
चरण 5
समीकरण के दोनों पक्षों से घटाएं.
चरण 6
समीकरण के दोनों पक्षों से घटाएं.
चरण 7
प्रत्येक गुणनखंड के लिए उन मानों को प्राप्त करने के लिए हल करें जहां निरपेक्ष मान व्यंजक ऋणात्मक से धनात्मक हो जाता है.
चरण 8
हल समेकित करें.
चरण 9
का डोमेन ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 9.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 9.3
डोमेन के सभी मान हैं जो व्यंजक को परिभाषित करते हैं.
चरण 10
परीक्षण अंतराल बनाने के लिए प्रत्येक मूल का प्रयोग करें.
चरण 11
प्रत्येक अंतराल से एक परीक्षण मान चुनें और यह निर्धारित करने के लिए कि कौन से अंतराल असमानता को संतुष्ट करते हैं, इस मान को मूल असमानता में प्लग करें.
और स्टेप्स के लिए टैप करें…
चरण 11.1
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 11.1.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 11.1.2
मूल असमानता में को से बदलें.
चरण 11.1.3
बाईं ओर दाईं ओर से छोटा है, जिसका अर्थ है कि दिया गया कथन गलत है.
असत्य
असत्य
चरण 11.2
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 11.2.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 11.2.2
मूल असमानता में को से बदलें.
चरण 11.2.3
बाईं ओर दाईं ओर से बड़ा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
सत्य
सत्य
चरण 11.3
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 11.3.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 11.3.2
मूल असमानता में को से बदलें.
चरण 11.3.3
बाईं ओर दाईं ओर से छोटा है, जिसका अर्थ है कि दिया गया कथन गलत है.
असत्य
असत्य
चरण 11.4
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 11.4.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 11.4.2
मूल असमानता में को से बदलें.
चरण 11.4.3
बाईं ओर दाईं ओर से बड़ा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
सत्य
सत्य
चरण 11.5
यह निर्धारित करने के लिए अंतराल की तुलना करें कि कौन से तत्व मूल असमानता को संतुष्ट करते हैं.
गलत
सही
गलत
सही
गलत
सही
गलत
सही
चरण 12
हल में सभी सच्चे अंतराल होते हैं.
या
चरण 13
परिणाम कई रूपों में दिखाया जा सकता है.
असमानता रूप:
मध्यवर्ती संकेतन:
चरण 14