समस्या दर्ज करें...
एलजेब्रा उदाहरण
चरण 1
कोज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम कोज्या लें.
चरण 2
चरण 2.1
का सटीक मान है.
चरण 3
दूसरे और तीसरे चतुर्थांश में कोज्या फलन ऋणात्मक होता है. दूसरा हल ज्ञात करने के लिए, तीसरे चतुर्थांश में हल ज्ञात करने के लिए संदर्भ कोण को से घटाएं.
चरण 4
चरण 4.1
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 4.2
न्यूमेरेटरों को जोड़ें.
चरण 4.2.1
और को मिलाएं.
चरण 4.2.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 4.3
न्यूमेरेटर को सरल करें.
चरण 4.3.1
को से गुणा करें.
चरण 4.3.2
में से घटाएं.
चरण 5
चरण 5.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 5.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 5.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 5.4
को से विभाजित करें.
चरण 6
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
चरण 7
परीक्षण अंतराल बनाने के लिए प्रत्येक मूल का प्रयोग करें.
चरण 8
चरण 8.1
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
चरण 8.1.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 8.1.2
मूल असमानता में को से बदलें.
चरण 8.1.3
बाईं ओर दाईं ओर से छोटा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
सत्य
सत्य
चरण 8.2
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
चरण 8.2.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 8.2.2
मूल असमानता में को से बदलें.
चरण 8.2.3
बाईं ओर दाईं ओर से बड़ा है, जिसका अर्थ है कि दिया गया कथन गलत है.
असत्य
असत्य
चरण 8.3
यह निर्धारित करने के लिए अंतराल की तुलना करें कि कौन से तत्व मूल असमानता को संतुष्ट करते हैं.
सही
गलत
सही
गलत
चरण 9
हल में सभी सच्चे अंतराल होते हैं.
, किसी भी पूर्णांक के लिए
चरण 10