एलजेब्रा उदाहरण

xについて不等式を解く x^3-2x^2>15x
चरण 1
असमानता के दोनों पक्षों से घटाएं.
चरण 2
असमानता को समीकरण में बदलें.
चरण 3
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
में से का गुणनखंड करें.
चरण 3.1.2
में से का गुणनखंड करें.
चरण 3.1.3
में से का गुणनखंड करें.
चरण 3.1.4
में से का गुणनखंड करें.
चरण 3.1.5
में से का गुणनखंड करें.
चरण 3.2
गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
AC विधि का उपयोग करके का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 3.2.1.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 3.2.2
अनावश्यक कोष्ठक हटा दें.
चरण 4
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 5
को के बराबर सेट करें.
चरण 6
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
को के बराबर सेट करें.
चरण 6.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 7
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
को के बराबर सेट करें.
चरण 7.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 8
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 9
परीक्षण अंतराल बनाने के लिए प्रत्येक मूल का प्रयोग करें.
चरण 10
प्रत्येक अंतराल से एक परीक्षण मान चुनें और यह निर्धारित करने के लिए कि कौन से अंतराल असमानता को संतुष्ट करते हैं, इस मान को मूल असमानता में प्लग करें.
और स्टेप्स के लिए टैप करें…
चरण 10.1
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 10.1.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 10.1.2
मूल असमानता में को से बदलें.
चरण 10.1.3
बाईं ओर दाईं ओर से बड़ा नहीं है, जिसका अर्थ है कि दिया गया कथन गलत है.
असत्य
असत्य
चरण 10.2
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 10.2.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 10.2.2
मूल असमानता में को से बदलें.
चरण 10.2.3
बाईं ओर दाईं ओर से बड़ा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
सत्य
सत्य
चरण 10.3
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 10.3.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 10.3.2
मूल असमानता में को से बदलें.
चरण 10.3.3
बाईं ओर दाईं ओर से बड़ा नहीं है, जिसका अर्थ है कि दिया गया कथन गलत है.
असत्य
असत्य
चरण 10.4
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 10.4.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 10.4.2
मूल असमानता में को से बदलें.
चरण 10.4.3
बाईं ओर दाईं ओर से बड़ा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
सत्य
सत्य
चरण 10.5
यह निर्धारित करने के लिए अंतराल की तुलना करें कि कौन से तत्व मूल असमानता को संतुष्ट करते हैं.
गलत
सही
गलत
सही
गलत
सही
गलत
सही
चरण 11
हल में सभी सच्चे अंतराल होते हैं.
या
चरण 12
परिणाम कई रूपों में दिखाया जा सकता है.
असमानता रूप:
मध्यवर्ती संकेतन:
चरण 13