एलजेब्रा उदाहरण

चरण 1
चूंकि समीकरण के दाएं पक्ष की ओर है, पक्षों को स्विच करें ताकि यह समीकरण के बाएं पक्ष की ओर हो.
चरण 2
समीकरण के दोनों पक्षों से घटाएं.
चरण 3
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
व्यंजक को पुन: व्यवस्थित करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
ले जाएं.
चरण 3.1.2
और को पुन: क्रमित करें.
चरण 3.2
में से का गुणनखंड करें.
चरण 3.3
में से का गुणनखंड करें.
चरण 3.4
में से का गुणनखंड करें.
चरण 3.5
में से का गुणनखंड करें.
चरण 3.6
में से का गुणनखंड करें.
चरण 4
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
को के बराबर सेट करें.
चरण 5.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 5.2.2
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.2.1
को के रूप में फिर से लिखें.
चरण 5.2.2.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 5.2.2.3
जोड़ या घटाव , है.
चरण 6
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
को के बराबर सेट करें.
चरण 6.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
हल पता करने के लिए द्विघात सूत्र का प्रयोग करें.
चरण 6.2.2
द्विघात सूत्र में , और मानों को प्रतिस्थापित करें और के लिए हल करें.
चरण 6.2.3
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.3.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.3.1.1
को के घात तक बढ़ाएं.
चरण 6.2.3.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.3.1.2.1
को से गुणा करें.
चरण 6.2.3.1.2.2
को से गुणा करें.
चरण 6.2.3.1.3
में से घटाएं.
चरण 6.2.3.1.4
को के रूप में फिर से लिखें.
चरण 6.2.3.1.5
को के रूप में फिर से लिखें.
चरण 6.2.3.1.6
को के रूप में फिर से लिखें.
चरण 6.2.3.2
को से गुणा करें.
चरण 6.2.4
अंतिम उत्तर दोनों हलों का संयोजन है.
चरण 7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.