एलजेब्रा उदाहरण

द्विघात सूत्र का उपयोग कर हल करें 1/2y^2-1/2=3/8y
चरण 1
सभी पदों को समीकरण के बाईं ओर ले जाएँ और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
और को मिलाएं.
चरण 1.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
और को मिलाएं.
चरण 1.3
समीकरण के दोनों पक्षों से घटाएं.
चरण 2
लघुत्तम सामान्य भाजक से गुणा करें, और फिर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
वितरण गुणधर्म लागू करें.
चरण 2.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1
में से का गुणनखंड करें.
चरण 2.2.1.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.3
व्यंजक को फिर से लिखें.
चरण 2.2.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 2.2.2.2
में से का गुणनखंड करें.
चरण 2.2.2.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.2.4
व्यंजक को फिर से लिखें.
चरण 2.2.3
को से गुणा करें.
चरण 2.2.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.4.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 2.2.4.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.4.3
व्यंजक को फिर से लिखें.
चरण 2.3
ले जाएं.
चरण 3
हल पता करने के लिए द्विघात सूत्र का प्रयोग करें.
चरण 4
द्विघात सूत्र में , और मानों को प्रतिस्थापित करें और के लिए हल करें.
चरण 5
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1.1
को के घात तक बढ़ाएं.
चरण 5.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1.2.1
को से गुणा करें.
चरण 5.1.2.2
को से गुणा करें.
चरण 5.1.3
और जोड़ें.
चरण 5.2
को से गुणा करें.
चरण 6
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: