एलजेब्रा उदाहरण

चरण 1
असमानता को समीकरण में बदलें.
चरण 2
हल पता करने के लिए द्विघात सूत्र का प्रयोग करें.
चरण 3
द्विघात सूत्र में , और मानों को प्रतिस्थापित करें और के लिए हल करें.
चरण 4
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
एक का कोई भी घात एक होता है.
चरण 4.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1
को से गुणा करें.
चरण 4.1.2.2
को से गुणा करें.
चरण 4.1.3
और जोड़ें.
चरण 4.2
को से गुणा करें.
चरण 5
हल समेकित करें.
चरण 6
परीक्षण अंतराल बनाने के लिए प्रत्येक मूल का प्रयोग करें.
चरण 7
प्रत्येक अंतराल से एक परीक्षण मान चुनें और यह निर्धारित करने के लिए कि कौन से अंतराल असमानता को संतुष्ट करते हैं, इस मान को मूल असमानता में प्लग करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 7.1.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 7.1.2
मूल असमानता में को से बदलें.
चरण 7.1.3
बाईं ओर दाईं ओर से बड़ा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
सत्य
सत्य
चरण 7.2
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 7.2.2
मूल असमानता में को से बदलें.
चरण 7.2.3
बाईं ओर दाईं ओर से बड़ा नहीं है, जिसका अर्थ है कि दिया गया कथन गलत है.
असत्य
असत्य
चरण 7.3
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 7.3.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 7.3.2
मूल असमानता में को से बदलें.
चरण 7.3.3
बाईं ओर दाईं ओर से बड़ा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
सत्य
सत्य
चरण 7.4
यह निर्धारित करने के लिए अंतराल की तुलना करें कि कौन से तत्व मूल असमानता को संतुष्ट करते हैं.
सही
गलत
सही
सही
गलत
सही
चरण 8
हल में सभी सच्चे अंतराल होते हैं.
या
चरण 9
परिणाम कई रूपों में दिखाया जा सकता है.
असमानता रूप:
मध्यवर्ती संकेतन:
चरण 10