एलजेब्रा उदाहरण

मूल्यांकन करें sin(-t)=3/8
चरण 1
ज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम ज्या लें.
चरण 2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.1
का मान ज्ञात करें.
चरण 3
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 3.2.2
को से विभाजित करें.
चरण 3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
को से विभाजित करें.
चरण 4
पहले और दूसरे चतुर्थांश में ज्या फलन धनात्मक होता है. दूसरा हल पता करने के लिए, दूसरे चतुर्थांश में हल पता करने के लिए संदर्भ कोण को से घटाएं.
चरण 5
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
के प्रत्येक पद को से विभाजित करें.
चरण 5.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 5.2.2
को से विभाजित करें.
चरण 5.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.3.1
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 5.3.2
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.3.2.1
में से घटाएं.
चरण 5.3.2.2
को से विभाजित करें.
चरण 6
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 6.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 6.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 6.4
को से विभाजित करें.
चरण 7
धनात्मक कोण प्राप्त करने के लिए प्रत्येक ऋणात्मक कोण में जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
धनात्मक कोण ज्ञात करने के लिए को में जोड़ें.
चरण 7.2
में से घटाएं.
चरण 7.3
धनात्मक कोण ज्ञात करने के लिए को में जोड़ें.
चरण 7.4
में से घटाएं.
चरण 7.5
नए कोणों की सूची बनाएंं.
चरण 8
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
चरण 9
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप:
चरण 10
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: