एलजेब्रा उदाहरण

xについて不等式を解く -x^2-64<=-16x
चरण 1
असमानता के दोनों पक्षों में जोड़ें.
चरण 2
असमानता को समीकरण में बदलें.
चरण 3
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
ले जाएं.
चरण 3.1.2
में से का गुणनखंड करें.
चरण 3.1.3
में से का गुणनखंड करें.
चरण 3.1.4
को के रूप में फिर से लिखें.
चरण 3.1.5
में से का गुणनखंड करें.
चरण 3.1.6
में से का गुणनखंड करें.
चरण 3.2
पूर्ण वर्ग नियम का उपयोग करके गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
को के रूप में फिर से लिखें.
चरण 3.2.2
जाँच करें कि मध्य पद पहले पद और तीसरे पद में वर्गीकृत की जा रही संख्याओं के गुणनफल का दोगुना है.
चरण 3.2.3
बहुपद को फिर से लिखें.
चरण 3.2.4
पूर्ण वर्ग त्रिपद नियम का उपयोग करके गुणनखंड करें, जहाँ और है.
चरण 4
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
के प्रत्येक पद को से विभाजित करें.
चरण 4.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 4.2.2
को से विभाजित करें.
चरण 4.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
को से विभाजित करें.
चरण 5
को के बराबर सेट करें.
चरण 6
समीकरण के दोनों पक्षों में जोड़ें.
चरण 7
परीक्षण अंतराल बनाने के लिए प्रत्येक मूल का प्रयोग करें.
चरण 8
प्रत्येक अंतराल से एक परीक्षण मान चुनें और यह निर्धारित करने के लिए कि कौन से अंतराल असमानता को संतुष्ट करते हैं, इस मान को मूल असमानता में प्लग करें.
और स्टेप्स के लिए टैप करें…
चरण 8.1
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 8.1.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 8.1.2
मूल असमानता में को से बदलें.
चरण 8.1.3
बाईं ओर दाईं ओर से छोटा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
सत्य
सत्य
चरण 8.2
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 8.2.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 8.2.2
मूल असमानता में को से बदलें.
चरण 8.2.3
बाईं ओर दाईं ओर से छोटा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
सत्य
सत्य
चरण 8.3
यह निर्धारित करने के लिए अंतराल की तुलना करें कि कौन से तत्व मूल असमानता को संतुष्ट करते हैं.
सही
सही
सही
सही
चरण 9
हल में सभी सच्चे अंतराल होते हैं.
या
चरण 10
अंतराल को जोड़ें.
सभी वास्तविक संख्या
चरण 11
परिणाम कई रूपों में दिखाया जा सकता है.
सभी वास्तविक संख्या
मध्यवर्ती संकेतन:
चरण 12