एलजेब्रा उदाहरण

xを解きます x+ के लघुगणक बेस 3 6>=2 के लघुगणक बेस 3
चरण 1
असमानता को समानता में बदलें.
चरण 2
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
लघुगणक की गुणनफल गुणधर्म, का उपयोग करें.
चरण 2.1.2
को के बाईं ओर ले जाएं.
चरण 2.2
लघुगणक की परिभाषा का उपयोग करते हुए को घातीय रूप में फिर से लिखें. अगर और धनात्मक वास्तविक संख्याएं हैं और , तो के बराबर है.
चरण 2.3
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
समीकरण को के रूप में फिर से लिखें.
चरण 2.3.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.3.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.2.2.1.2
को से विभाजित करें.
चरण 2.3.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.3.1
को के घात तक बढ़ाएं.
चरण 2.3.2.3.2
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.3.2.1
में से का गुणनखंड करें.
चरण 2.3.2.3.2.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.3.2.2.1
में से का गुणनखंड करें.
चरण 2.3.2.3.2.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.2.3.2.2.3
व्यंजक को फिर से लिखें.
चरण 3
का डोमेन ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
यह पता लगाने के लिए कि व्यंजक कहाँ परिभाषित है, तर्क को से बड़ा में सेट करें.
चरण 3.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.2.1.2
को से विभाजित करें.
चरण 3.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.3.1
को से विभाजित करें.
चरण 3.3
डोमेन के सभी मान हैं जो व्यंजक को परिभाषित करते हैं.
चरण 4
हल में सभी सच्चे अंतराल होते हैं.
चरण 5
परिणाम कई रूपों में दिखाया जा सकता है.
असमानता रूप:
मध्यवर्ती संकेतन:
चरण 6