एलजेब्रा उदाहरण

xについて不等式を解く 5/x+6/(5x)>2/3
चरण 1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 1.2
प्रत्येक व्यंजक को के सामान्य भाजक के साथ लिखें, प्रत्येक को के उपयुक्त गुणनखंड से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
को से गुणा करें.
चरण 1.2.2
को के बाईं ओर ले जाएं.
चरण 1.3
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.4
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.1
को से गुणा करें.
चरण 1.4.2
और जोड़ें.
चरण 2
दोनों पक्षों को से गुणा करें.
चरण 3
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 3.1.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1.2.1
में से का गुणनखंड करें.
चरण 3.1.1.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.1.1.2.3
व्यंजक को फिर से लिखें.
चरण 3.1.1.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.1.1.3.2
व्यंजक को फिर से लिखें.
चरण 3.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1
और को मिलाएं.
चरण 3.2.1.2
को से गुणा करें.
चरण 3.2.1.3
और को मिलाएं.
चरण 4
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
समीकरण को के रूप में फिर से लिखें.
चरण 4.2
समीकरण के दोनों पक्षों को से गुणा करें.
चरण 4.3
समीकरण के दोनों पक्षों को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1.1.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1.1.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.3.1.1.1.2
व्यंजक को फिर से लिखें.
चरण 4.3.1.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1.1.2.1
में से का गुणनखंड करें.
चरण 4.3.1.1.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.3.1.1.2.3
व्यंजक को फिर से लिखें.
चरण 4.3.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.3.2.1
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.2.1.1
और को मिलाएं.
चरण 4.3.2.1.2
को से गुणा करें.
चरण 5
का डोमेन ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 5.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 5.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.2.2.1.2
को से विभाजित करें.
चरण 5.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.2.3.1
को से विभाजित करें.
चरण 5.3
डोमेन के सभी मान हैं जो व्यंजक को परिभाषित करते हैं.
चरण 6
परीक्षण अंतराल बनाने के लिए प्रत्येक मूल का प्रयोग करें.
चरण 7
प्रत्येक अंतराल से एक परीक्षण मान चुनें और यह निर्धारित करने के लिए कि कौन से अंतराल असमानता को संतुष्ट करते हैं, इस मान को मूल असमानता में प्लग करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 7.1.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 7.1.2
मूल असमानता में को से बदलें.
चरण 7.1.3
बाईं ओर दाईं ओर से बड़ा नहीं है, जिसका अर्थ है कि दिया गया कथन गलत है.
असत्य
असत्य
चरण 7.2
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 7.2.2
मूल असमानता में को से बदलें.
चरण 7.2.3
बाईं ओर दाईं ओर से बड़ा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
सत्य
सत्य
चरण 7.3
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 7.3.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 7.3.2
मूल असमानता में को से बदलें.
चरण 7.3.3
बाईं ओर दाईं ओर से बड़ा नहीं है, जिसका अर्थ है कि दिया गया कथन गलत है.
असत्य
असत्य
चरण 7.4
यह निर्धारित करने के लिए अंतराल की तुलना करें कि कौन से तत्व मूल असमानता को संतुष्ट करते हैं.
गलत
सही
गलत
गलत
सही
गलत
चरण 8
हल में सभी सच्चे अंतराल होते हैं.
चरण 9
परिणाम कई रूपों में दिखाया जा सकता है.
असमानता रूप:
मध्यवर्ती संकेतन:
चरण 10