एलजेब्रा उदाहरण

द्विघात सूत्र का उपयोग कर हल करें 3x^2+5x+2 1/12
3x2+5x+21123x2+5x+2112
चरण 1
3x2+5x+21123x2+5x+2112 को 00 के बराबर सेट करें.
3x2+5x+2112=03x2+5x+2112=0
चरण 2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.1
21122112 को विषम भिन्न में बदलें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
एक मिश्रित संख्या उसके पूर्ण और भिन्नात्मक भागों का योग होती है.
3x2+5x+2+112=03x2+5x+2+112=0
चरण 2.1.2
22 और 112112 जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1
22 को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, 12121212 से गुणा करें.
3x2+5x+21212+112=03x2+5x+21212+112=0
चरण 2.1.2.2
22 और 12121212 को मिलाएं.
3x2+5x+21212+112=03x2+5x+21212+112=0
चरण 2.1.2.3
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
3x2+5x+212+112=03x2+5x+212+112=0
चरण 2.1.2.4
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.4.1
22 को 1212 से गुणा करें.
3x2+5x+24+112=03x2+5x+24+112=0
चरण 2.1.2.4.2
2424 और 11 जोड़ें.
3x2+5x+2512=03x2+5x+2512=0
3x2+5x+2512=03x2+5x+2512=0
3x2+5x+2512=03x2+5x+2512=0
3x2+5x+2512=03x2+5x+2512=0
3x2+5x+2512=03x2+5x+2512=0
चरण 3
लघुत्तम सामान्य भाजक 1212 से गुणा करें, और फिर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
वितरण गुणधर्म लागू करें.
12(3x2)+12(5x)+12(2512)=012(3x2)+12(5x)+12(2512)=0
चरण 3.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
33 को 1212 से गुणा करें.
36x2+12(5x)+12(2512)=036x2+12(5x)+12(2512)=0
चरण 3.2.2
55 को 1212 से गुणा करें.
36x2+60x+12(2512)=036x2+60x+12(2512)=0
चरण 3.2.3
1212 का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
36x2+60x+12(2512)=0
चरण 3.2.3.2
व्यंजक को फिर से लिखें.
36x2+60x+25=0
36x2+60x+25=0
36x2+60x+25=0
36x2+60x+25=0
चरण 4
हल पता करने के लिए द्विघात सूत्र का प्रयोग करें.
-b±b2-4(ac)2a
चरण 5
द्विघात सूत्र में a=36, b=60 और c=25 मानों को प्रतिस्थापित करें और x के लिए हल करें.
-60±602-4(3625)236
चरण 6
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1.1
60 को 2 के घात तक बढ़ाएं.
x=-60±3600-43625236
चरण 6.1.2
-43625 गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1.2.1
-4 को 36 से गुणा करें.
x=-60±3600-14425236
चरण 6.1.2.2
-144 को 25 से गुणा करें.
x=-60±3600-3600236
x=-60±3600-3600236
चरण 6.1.3
3600 में से 3600 घटाएं.
x=-60±0236
चरण 6.1.4
0 को 02 के रूप में फिर से लिखें.
x=-60±02236
चरण 6.1.5
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
x=-60±0236
चरण 6.1.6
-60 जोड़ या घटाव 0, -60 है.
x=-60236
x=-60236
चरण 6.2
2 को 36 से गुणा करें.
x=-6072
चरण 6.3
-60 और 72 के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 6.3.1
-60 में से 12 का गुणनखंड करें.
x=12(-5)72
चरण 6.3.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 6.3.2.1
72 में से 12 का गुणनखंड करें.
x=12-5126
चरण 6.3.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
x=12-5126
चरण 6.3.2.3
व्यंजक को फिर से लिखें.
x=-56
x=-56
x=-56
चरण 6.4
भिन्न के सामने ऋणात्मक ले जाएँ.
x=-56
x=-56
चरण 7
अंतिम उत्तर दोनों हलों का संयोजन है.
x=-56 दो मूल
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
4
4
5
5
6
6
/
/
^
^
×
×
>
>
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
π
π
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]