एलजेब्रा उदाहरण

रूपांतरण का वर्णन कीजिये f(x)=1/4*4^x-2
चरण 1
पैरेंट फलन दिए गए फलन के प्रकार का सबसे सरल रूप है.
चरण 2
पहले समीकरण से दूसरे समीकरण में परिवर्तन प्रत्येक समीकरण के लिए , और को खोज कर पता किया जा सकता है.
चरण 3
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
और को मिलाएं.
चरण 3.2
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
में से का गुणनखंड करें.
चरण 3.2.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1
में से का गुणनखंड करें.
चरण 3.2.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.2.3
व्यंजक को फिर से लिखें.
चरण 3.2.2.4
को से विभाजित करें.
चरण 4
के लिए , और पता करें.
चरण 5
के लिए , और पता करें.
चरण 6
क्षैतिज बदलाव के मान पर निर्भर करता है. क्षैतिज बदलाव को इस प्रकार वर्णित किया गया है:
- ग्राफ को यूनिट बायीं ओर शिफ्ट किया गया.
- ग्राफ को यूनिट दायें ओर शिफ्ट किया गया.
क्षैतिज शिफ्ट: कोई नहीं
चरण 7
ऊर्ध्वाधर बदलाव के मान पर निर्भर करता है. ऊर्ध्वाधर बदलाव को इस प्रकार वर्णित किया गया है:
- ग्राफ को यूनिट ऊपर शिफ्ट किया गया.
- The graph is shifted down units.
ऊर्ध्वाधर बदलाव: नीचे इकाइयां
चरण 8
का चिन्ह x-अक्ष पर परावर्तन का वर्णन करता है. का अर्थ है कि ग्राफ x-अक्ष पर परावर्तित होता है.
x-अक्ष के बारे में परावर्तन: कोई नहीं
चरण 9
का मान ग्राफ़ के ऊर्ध्वाधर खिंचाव या संपीड़न का वर्णन करता है.
एक ऊर्ध्वाधर खिंचाव है (इसे संकरा बनाता है)
एक लंबवत संपीड़न है (इसे व्यापक बनाता है)
ऊर्ध्वाधर संपीड़न: संपीड़ित
चरण 10
परिवर्तन को पता करने के लिए, दो फलनों की तुलना करें और यह देखने के लिए जांचें कि क्या क्षैतिज या ऊर्ध्वाधर बदलाव है, x-अक्ष के बारे में प्रतिबिंब है और यदि कोई ऊर्ध्वाधर खिंचाव है.
पैरेंट फंक्शन:
क्षैतिज शिफ्ट: कोई नहीं
ऊर्ध्वाधर बदलाव: नीचे इकाइयां
x-अक्ष के बारे में परावर्तन: कोई नहीं
ऊर्ध्वाधर संपीड़न: संपीड़ित
चरण 11