एलजेब्रा उदाहरण

xについて有理方程式を解く (2x-9)/(x-7)+x/2=5/(x-7)
चरण 1
समीकरण के पदों का LCD पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 1.2
LCM (लघुत्तम समापवर्तक) सबसे छोटी धनात्मक संख्या है जिसे सभी संख्याएँ समान रूप से विभाजित करती हैं.
1. प्रत्येक संख्या के अभाज्य गुणनखंडों की सूची बनाइए.
2. प्रत्येक गुणनखंड को किसी भी संख्या में जितनी बार आता है उतनी बार गुणा करें.
चरण 1.3
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 1.4
चूंकि का और के अलावा कोई गुणनखंड नहीं है.
एक अभाज्य संख्या है
चरण 1.5
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 1.6
का LCM (लघुत्तम समापवर्तक) सभी अभाज्य गुणन खंड में से किसी एक संख्या में आने वाली सबसे बड़ी संख्या को गुणा करने का परिणाम है.
चरण 1.7
का गुणनखंड ही है.
बार आता है.
चरण 1.8
का LCM (न्यूनतम सामान्य गुणक) सभी गुणनखंडों को किसी भी पद में सबसे बड़ी संख्या में गुणा करने का परिणाम है.
चरण 1.9
कुछ संख्याओं का लघुत्तम समापवर्तक वह सबसे छोटी संख्या होती है, जिसके गुणनखंड होते हैं.
चरण 2
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
के प्रत्येक पद को से गुणा करें.
चरण 2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 2.2.1.2
और को मिलाएं.
चरण 2.2.1.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.3.2
व्यंजक को फिर से लिखें.
चरण 2.2.1.4
वितरण गुणधर्म लागू करें.
चरण 2.2.1.5
को से गुणा करें.
चरण 2.2.1.6
को से गुणा करें.
चरण 2.2.1.7
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 2.2.1.8
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.8.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.8.2
व्यंजक को फिर से लिखें.
चरण 2.2.1.9
वितरण गुणधर्म लागू करें.
चरण 2.2.1.10
को से गुणा करें.
चरण 2.2.1.11
को के बाईं ओर ले जाएं.
चरण 2.2.2
में से घटाएं.
चरण 2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 2.3.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1
और को मिलाएं.
चरण 2.3.2.2
को से गुणा करें.
चरण 2.3.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.3.2
व्यंजक को फिर से लिखें.
चरण 3
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.2
में से घटाएं.
चरण 3.3
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
मान लीजिए . की सभी घटनाओं के लिए को प्रतिस्थापित करें.
चरण 3.3.2
AC विधि का उपयोग करके का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 3.3.2.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 3.3.3
की सभी घटनाओं को से बदलें.
चरण 3.4
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 3.5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.1
को के बराबर सेट करें.
चरण 3.5.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.6
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.6.1
को के बराबर सेट करें.
चरण 3.6.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 4
उन हलों को छोड़ दें जो को सत्य नहीं बनाते हैं.