समस्या दर्ज करें...
एलजेब्रा उदाहरण
चरण 1
चरण 1.1
AC विधि का उपयोग करके का गुणनखंड करें.
चरण 1.1.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 1.1.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 1.2
में से का गुणनखंड करें.
चरण 1.2.1
में से का गुणनखंड करें.
चरण 1.2.2
में से का गुणनखंड करें.
चरण 1.2.3
में से का गुणनखंड करें.
चरण 2
चरण 2.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 2.2
चूँकि में संख्याएँ और चर दोनों शामिल हैं, LCM को खोजने के लिए दो चरण हैं. संख्यात्मक भाग के लिए LCM खोजें फिर चर भाग के लिए LCM पता करें.
चरण 2.3
LCM (लघुत्तम समापवर्तक) सबसे छोटी धनात्मक संख्या है जिसे सभी संख्याएँ समान रूप से विभाजित करती हैं.
1. प्रत्येक संख्या के अभाज्य गुणनखंडों की सूची बनाइए.
2. प्रत्येक गुणनखंड को किसी भी संख्या में जितनी बार आता है उतनी बार गुणा करें.
चरण 2.4
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 2.5
का LCM (लघुत्तम समापवर्तक) सभी अभाज्य गुणन खंड में से किसी एक संख्या में आने वाली सबसे बड़ी संख्या को गुणा करने का परिणाम है.
चरण 2.6
का गुणनखंड ही है.
बार आता है.
चरण 2.7
का LCM (न्यूनतम सामान्य गुणक) सभी अभाज्य गुणन खंडों को किसी भी पद में जितनी बार वे आते हैं, गुणा करने का परिणाम है.
चरण 3
चरण 3.1
के प्रत्येक पद को से गुणा करें.
चरण 3.2
बाईं ओर को सरल बनाएंं.
चरण 3.2.1
प्रत्येक पद को सरल करें.
चरण 3.2.1.1
को से गुणा करें.
चरण 3.2.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.2.2
व्यंजक को फिर से लिखें.
चरण 3.2.1.3
FOIL विधि का उपयोग करके का प्रसार करें.
चरण 3.2.1.3.1
वितरण गुणधर्म लागू करें.
चरण 3.2.1.3.2
वितरण गुणधर्म लागू करें.
चरण 3.2.1.3.3
वितरण गुणधर्म लागू करें.
चरण 3.2.1.4
समान पदों को सरल और संयोजित करें.
चरण 3.2.1.4.1
प्रत्येक पद को सरल करें.
चरण 3.2.1.4.1.1
को से गुणा करें.
चरण 3.2.1.4.1.2
को के बाईं ओर ले जाएं.
चरण 3.2.1.4.1.3
को से गुणा करें.
चरण 3.2.1.4.2
में से घटाएं.
चरण 3.2.2
पदों को जोड़कर सरल करें.
चरण 3.2.2.1
और जोड़ें.
चरण 3.2.2.2
में से घटाएं.
चरण 3.3
दाईं ओर को सरल बनाएंं.
चरण 3.3.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.1.2
व्यंजक को फिर से लिखें.
चरण 3.3.2
वितरण गुणधर्म लागू करें.
चरण 3.3.3
को से गुणा करें.
चरण 4
चरण 4.1
वाले सभी पदों को समीकरण के बाईं ओर ले जाएँ.
चरण 4.1.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 4.1.2
में से घटाएं.
चरण 4.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 4.3
में विपरीत पदों को मिलाएं.
चरण 4.3.1
और जोड़ें.
चरण 4.3.2
और जोड़ें.
चरण 4.4
में से का गुणनखंड करें.
चरण 4.4.1
में से का गुणनखंड करें.
चरण 4.4.2
में से का गुणनखंड करें.
चरण 4.4.3
में से का गुणनखंड करें.
चरण 4.5
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 4.6
को के बराबर सेट करें.
चरण 4.7
को के बराबर सेट करें और के लिए हल करें.
चरण 4.7.1
को के बराबर सेट करें.
चरण 4.7.2
के लिए हल करें.
चरण 4.7.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 4.7.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 4.7.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 4.7.2.2.2
बाईं ओर को सरल बनाएंं.
चरण 4.7.2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.7.2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.7.2.2.2.1.2
को से विभाजित करें.
चरण 4.8
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 5
उन हलों को छोड़ दें जो को सत्य नहीं बनाते हैं.
चरण 6
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप:
मिश्रित संख्या रूप: