समस्या दर्ज करें...
एलजेब्रा उदाहरण
चरण 1
ज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम ज्या लें.
चरण 2
चरण 2.1
का सटीक मान है.
चरण 3
तीसरे और चौथे चतुर्थांश में ज्या फलन ऋणात्मक होता है. दूसरा हल पता करने के लिए, संदर्भ कोण पता करने के लिए हल को से घटाएं. इसके बाद, तीसरे चतुर्थांश में हल पता करने के लिए इस संदर्भ कोण को में जोड़ें.
चरण 4
चरण 4.1
में से घटाएं.
चरण 4.2
का परिणामी कोण धनात्मक है, से कम है और के साथ कोटरमिनल है.
चरण 5
चरण 5.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 5.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 5.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 5.4
को से विभाजित करें.
चरण 6
चरण 6.1
धनात्मक कोण ज्ञात करने के लिए को में जोड़ें.
चरण 6.2
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 6.3
न्यूमेरेटरों को जोड़ें.
चरण 6.3.1
और को मिलाएं.
चरण 6.3.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 6.4
न्यूमेरेटर को सरल करें.
चरण 6.4.1
को से गुणा करें.
चरण 6.4.2
में से घटाएं.
चरण 6.5
नए कोणों की सूची बनाएंं.
चरण 7
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
चरण 8
उत्तरों को समेकित करें.
, किसी भी पूर्णांक के लिए
चरण 9
परीक्षण अंतराल बनाने के लिए प्रत्येक मूल का प्रयोग करें.
चरण 10
चरण 10.1
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
चरण 10.1.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 10.1.2
मूल असमानता में को से बदलें.
चरण 10.1.3
बाईं ओर दाईं ओर से बड़ा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
सत्य
सत्य
चरण 10.2
यह निर्धारित करने के लिए अंतराल की तुलना करें कि कौन से तत्व मूल असमानता को संतुष्ट करते हैं.
सही
सही
चरण 11
हल में सभी सच्चे अंतराल होते हैं.
, किसी भी पूर्णांक के लिए
चरण 12