एलजेब्रा उदाहरण

चरण 1
समीकरण के पदों का LCD पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 1.2
चूँकि में संख्याएँ और चर दोनों शामिल हैं, LCM को खोजने के लिए दो चरण हैं. संख्यात्मक भाग के लिए LCM खोजें फिर चर भाग के लिए LCM पता करें.
चरण 1.3
LCM (लघुत्तम समापवर्तक) सबसे छोटी धनात्मक संख्या है जिसे सभी संख्याएँ समान रूप से विभाजित करती हैं.
1. प्रत्येक संख्या के अभाज्य गुणनखंडों की सूची बनाइए.
2. प्रत्येक गुणनखंड को किसी भी संख्या में जितनी बार आता है उतनी बार गुणा करें.
चरण 1.4
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 1.5
के अभाज्य गुणन खंड हैं.
और स्टेप्स के लिए टैप करें…
चरण 1.5.1
के गुणनखंड और हैं.
चरण 1.5.2
के गुणनखंड और हैं.
चरण 1.6
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 1.7
का LCM (लघुत्तम समापवर्तक) सभी अभाज्य गुणन खंड में से किसी एक संख्या में आने वाली सबसे बड़ी संख्या को गुणा करने का परिणाम है.
चरण 1.8
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.8.1
को से गुणा करें.
चरण 1.8.2
को से गुणा करें.
चरण 1.9
का गुणनखंड ही है.
बार आता है.
चरण 1.10
का LCM (न्यूनतम सामान्य गुणक) सभी अभाज्य गुणन खंडों को किसी भी पद में जितनी बार वे आते हैं, गुणा करने का परिणाम है.
चरण 1.11
के लिए LCM (लघुत्तम समापवर्तक) संख्यात्मक भाग को चर भाग से गुणा किया जाता है.
चरण 2
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
के प्रत्येक पद को से गुणा करें.
चरण 2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 2.2.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.2.1
और को मिलाएं.
चरण 2.2.1.2.2
को से गुणा करें.
चरण 2.2.1.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.3.2
व्यंजक को फिर से लिखें.
चरण 2.2.1.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.4.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 2.2.1.4.2
में से का गुणनखंड करें.
चरण 2.2.1.4.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.4.4
व्यंजक को फिर से लिखें.
चरण 2.2.1.5
को के घात तक बढ़ाएं.
चरण 2.2.1.6
को के घात तक बढ़ाएं.
चरण 2.2.1.7
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.2.1.8
और जोड़ें.
चरण 2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.1
को से गुणा करें.
चरण 2.3.1.2
को से गुणा करें.
चरण 3
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 3.2.2.2
को से विभाजित करें.
चरण 3.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.3.1
को से विभाजित करें.
चरण 3.3
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 3.4
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.1
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.1.1
में से का गुणनखंड करें.
चरण 3.4.1.2
को के रूप में फिर से लिखें.
चरण 3.4.2
करणी से पदों को बाहर निकालें.
चरण 3.5
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 3.5.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 3.5.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 3.5.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 4
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: